The Design and Analysis of Monolithic Integration of CMOS-Compatible Plasmonic Waveguides for On-Chip Electronic-Photonic Integrated Circuits

Plasmonic waveguides based on surface plasmon polaritons (SPPs) are highly complementary metal-oxide-semiconductor (CMOS)-compatible that they have been considered as a prospective basic element to implement future on-chip subwavelength electronic-photonic integrated circuits (EPICs). We propose the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2013-09, Vol.31 (18), p.2974-2981
Hauptverfasser: Kim, Jin Tae, Park, Suntak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmonic waveguides based on surface plasmon polaritons (SPPs) are highly complementary metal-oxide-semiconductor (CMOS)-compatible that they have been considered as a prospective basic element to implement future on-chip subwavelength electronic-photonic integrated circuits (EPICs). We propose the monolithic integration of CMOS-compatible plasmonic waveguides within CMOS architecture for the development of CMOS EPICs. Based on a preformed CMOS optoelectronic platform, several different types of plasmonic EPIC schematics are proposed. The vertical directional coupling characteristics of the proposed plasmonic EPICs are thoroughly investigated in detail at a telecom wavelength of 1.55 μm. By changing the geometrical parameters of the plasmonic waveguides, we identified the coupler configuration that provides optimal optical performance. We discussed the design and fabrication issues for further development of the proposed plasmonic CMOS EPICs and related microsystems. We concluded that the proposed monolithic integration platform would make first step forward to exploiting for plasmonic-based 3-D on-chip EPICs.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2013.2276761