Investigation of the routing algorithm in a De Bruijn-based NoC for low-power applications

The De Bruijn topology, due to its interesting features such as a small minimal path, a small average latency and a small average number of hops, is a promising alternative topology to mesh-based NoCs for low-power applications. However, these advantages strongly depend on the efficiency of the rout...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stas, Francois, Lusala, Angelo Kuti, Legat, Jean-Didier, Bol, David
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The De Bruijn topology, due to its interesting features such as a small minimal path, a small average latency and a small average number of hops, is a promising alternative topology to mesh-based NoCs for low-power applications. However, these advantages strongly depend on the efficiency of the routing algorithm in presence of congestion. This paper investigates efficient implementations of routing algorithms in NoCs based on the De Bruijn topology. Four routing algorithms are proposed and evaluated for NoCs up to 64 nodes. Simulation results show that combining FIFO buffers and Deviation Priority in the General Shifting based Routing Algorithm "GSRA" leads to the best performances. With the proposed routing algorithm, the De Bruijn-based NoCs up to 64 nodes are shown to keep excellent communication bandwidth and latency with packet injection rates above 10%. The average number of hops is significantly smaller than for corresponding mesh-based NoC, thereby making the De Bruijn topology an excellent candidate for low-power applications.
DOI:10.1109/FTFC.2013.6577761