Practical implementation and performance assessment of an Extended Kalman Filter-based signal tracking loop

In this paper, the structure of a tracking loop with Extended Kalman Filter (EKF) is analyzed. Particular emphasis is given to the NCO update rule, which is seldom mentioned or studied in previous literature. Furthermore, the structure of an EKF-based software receiver is proposed including the spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xinhua Tang, Falco, Gianluca, Falletti, Emanuela, Lo Presti, Letizia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the structure of a tracking loop with Extended Kalman Filter (EKF) is analyzed. Particular emphasis is given to the NCO update rule, which is seldom mentioned or studied in previous literature. Furthermore, the structure of an EKF-based software receiver is proposed including the special modules dedicated to the initialization and maintenance of the tracking loop. The EKF-based tracking architecture has been compared with a traditional one based on an FLL/PLL+DLL architecture, and the benefit of the EKF within the tracking stage has been evaluated in terms of final positioning accuracy. Further tests have been carried out to compare the Position-Velocity-Time (PVT) solution of this receiver with the one provided by two commercial receivers: a mass-market GPS module (Ublox LEA-5T) and a professional one (Septentrio PolaRx2e@). The results show that the accuracy in PVT of the software receiver can be remarkably improved if the tracking is designed with a proper EKF architecture and the performance we can achieve is even better than the one obtained by the mass market receiver, even when a simple one-shot least-squares approach is adopted for the computation of the navigation solution.
ISSN:2325-0747
DOI:10.1109/ICL-GNSS.2013.6577275