Opinion Mining on Social Media Data

Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed through either computer or mobile devices by one person and is consumed by many other persons, with most of this user-generated content being te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Po-Wei Liang, Bi-Ru Dai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed through either computer or mobile devices by one person and is consumed by many other persons, with most of this user-generated content being textual information. As there are a lot of raw data of people posting real time messages about their opinions on a variety of topics in daily life, it is a worthwhile research endeavor to collect and analyze these data, which may be useful for users or managers to make informed decisions, for example. However this problem is challenging because a micro-blog post is usually very short and colloquial, and traditional opinion mining algorithms do not work well in such type of text. Therefore, in this paper, we propose a new system architecture that can automatically analyze the sentiments of these messages. We combine this system with manually annotated data from Twitter, one of the most popular microblogging platforms, for the task of sentiment analysis. In this system, machines can learn how to automatically extract the set of messages which contain opinions, filter out nonopinion messages and determine their sentiment directions (i.e. positive, negative). Experimental results verify the effectiveness of our system on sentiment analysis in real microblogging applications.
ISSN:1551-6245
2375-0324
DOI:10.1109/MDM.2013.73