Numerical simulation of an electromagnetic bending-mode cantilever microactuator

Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morega, A. M., Tanase, N., Popa, M., Morega, M., Dumitru, J. B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Morega, A. M.
Tanase, N.
Popa, M.
Morega, M.
Dumitru, J. B.
description Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.
doi_str_mv 10.1109/ATEE.2013.6563478
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6563478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6563478</ieee_id><sourcerecordid>6563478</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4932b40568515dd96fd2a03d3296d509af68a1caeb0dea76a2b47b27fcec7bdf3</originalsourceid><addsrcrecordid>eNpVkM1KxDAUhSMqOIx9AHGTF2jNT5M0y2GojjCoi3E93Ca3Q6BpJU0F394BZ-PqnA8O3-IQ8sBZxTmzT5tD21aCcVlppWVtmitSWNPwWhupzqW5_sdW3ZCVYLopjdX6jhTzHDrGjJLWCrkiH29LxBQcDHQOcRkgh2mkU09hpDigy2mKcBoxB0c7HH0YT2WcPFIHYw4DfmOiMbg0gcsL5Cndk9sehhmLS67J53N72O7K_fvL63azLwM3Kpe1laKrmdKN4sp7q3svgEkvhdVeMQu9boA7wI55BKPhvDadML1DZzrfyzV5_PMGRDx-pRAh_Rwvn8hfcQ5U-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</creator><creatorcontrib>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</creatorcontrib><description>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</description><identifier>ISSN: 2068-7966</identifier><identifier>ISBN: 9781467359795</identifier><identifier>ISBN: 1467359793</identifier><identifier>EISBN: 9781467359788</identifier><identifier>EISBN: 1467359785</identifier><identifier>EISBN: 1467359807</identifier><identifier>EISBN: 9781467359801</identifier><identifier>DOI: 10.1109/ATEE.2013.6563478</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blades ; cantilever ; finite element ; Magnetic domains ; Magnetic fields ; magnetic microactuator ; Mathematical model ; mathematical modeling ; Mirrors ; modal analysis ; Numerical models ; numerical simulation ; planar spiral coil ; Solid modeling ; stationary analysis</subject><ispartof>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6563478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6563478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morega, A. M.</creatorcontrib><creatorcontrib>Tanase, N.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Morega, M.</creatorcontrib><creatorcontrib>Dumitru, J. B.</creatorcontrib><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><title>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE)</title><addtitle>ATEE</addtitle><description>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</description><subject>Blades</subject><subject>cantilever</subject><subject>finite element</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>magnetic microactuator</subject><subject>Mathematical model</subject><subject>mathematical modeling</subject><subject>Mirrors</subject><subject>modal analysis</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>planar spiral coil</subject><subject>Solid modeling</subject><subject>stationary analysis</subject><issn>2068-7966</issn><isbn>9781467359795</isbn><isbn>1467359793</isbn><isbn>9781467359788</isbn><isbn>1467359785</isbn><isbn>1467359807</isbn><isbn>9781467359801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KxDAUhSMqOIx9AHGTF2jNT5M0y2GojjCoi3E93Ca3Q6BpJU0F394BZ-PqnA8O3-IQ8sBZxTmzT5tD21aCcVlppWVtmitSWNPwWhupzqW5_sdW3ZCVYLopjdX6jhTzHDrGjJLWCrkiH29LxBQcDHQOcRkgh2mkU09hpDigy2mKcBoxB0c7HH0YT2WcPFIHYw4DfmOiMbg0gcsL5Cndk9sehhmLS67J53N72O7K_fvL63azLwM3Kpe1laKrmdKN4sp7q3svgEkvhdVeMQu9boA7wI55BKPhvDadML1DZzrfyzV5_PMGRDx-pRAh_Rwvn8hfcQ5U-g</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Morega, A. M.</creator><creator>Tanase, N.</creator><creator>Popa, M.</creator><creator>Morega, M.</creator><creator>Dumitru, J. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><author>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4932b40568515dd96fd2a03d3296d509af68a1caeb0dea76a2b47b27fcec7bdf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blades</topic><topic>cantilever</topic><topic>finite element</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>magnetic microactuator</topic><topic>Mathematical model</topic><topic>mathematical modeling</topic><topic>Mirrors</topic><topic>modal analysis</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>planar spiral coil</topic><topic>Solid modeling</topic><topic>stationary analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Morega, A. M.</creatorcontrib><creatorcontrib>Tanase, N.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Morega, M.</creatorcontrib><creatorcontrib>Dumitru, J. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morega, A. M.</au><au>Tanase, N.</au><au>Popa, M.</au><au>Morega, M.</au><au>Dumitru, J. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</atitle><btitle>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE)</btitle><stitle>ATEE</stitle><date>2013-05</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2068-7966</issn><isbn>9781467359795</isbn><isbn>1467359793</isbn><eisbn>9781467359788</eisbn><eisbn>1467359785</eisbn><eisbn>1467359807</eisbn><eisbn>9781467359801</eisbn><abstract>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</abstract><pub>IEEE</pub><doi>10.1109/ATEE.2013.6563478</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2068-7966
ispartof 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013, p.1-6
issn 2068-7966
language eng
recordid cdi_ieee_primary_6563478
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Blades
cantilever
finite element
Magnetic domains
Magnetic fields
magnetic microactuator
Mathematical model
mathematical modeling
Mirrors
modal analysis
Numerical models
numerical simulation
planar spiral coil
Solid modeling
stationary analysis
title Numerical simulation of an electromagnetic bending-mode cantilever microactuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20an%20electromagnetic%20bending-mode%20cantilever%20microactuator&rft.btitle=2013%208TH%20INTERNATIONAL%20SYMPOSIUM%20ON%20ADVANCED%20TOPICS%20IN%20ELECTRICAL%20ENGINEERING%20(ATEE)&rft.au=Morega,%20A.%20M.&rft.date=2013-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2068-7966&rft.isbn=9781467359795&rft.isbn_list=1467359793&rft_id=info:doi/10.1109/ATEE.2013.6563478&rft_dat=%3Cieee_6IE%3E6563478%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467359788&rft.eisbn_list=1467359785&rft.eisbn_list=1467359807&rft.eisbn_list=9781467359801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6563478&rfr_iscdi=true