Numerical simulation of an electromagnetic bending-mode cantilever microactuator
Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simul...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Morega, A. M. Tanase, N. Popa, M. Morega, M. Dumitru, J. B. |
description | Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices. |
doi_str_mv | 10.1109/ATEE.2013.6563478 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6563478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6563478</ieee_id><sourcerecordid>6563478</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4932b40568515dd96fd2a03d3296d509af68a1caeb0dea76a2b47b27fcec7bdf3</originalsourceid><addsrcrecordid>eNpVkM1KxDAUhSMqOIx9AHGTF2jNT5M0y2GojjCoi3E93Ca3Q6BpJU0F394BZ-PqnA8O3-IQ8sBZxTmzT5tD21aCcVlppWVtmitSWNPwWhupzqW5_sdW3ZCVYLopjdX6jhTzHDrGjJLWCrkiH29LxBQcDHQOcRkgh2mkU09hpDigy2mKcBoxB0c7HH0YT2WcPFIHYw4DfmOiMbg0gcsL5Cndk9sehhmLS67J53N72O7K_fvL63azLwM3Kpe1laKrmdKN4sp7q3svgEkvhdVeMQu9boA7wI55BKPhvDadML1DZzrfyzV5_PMGRDx-pRAh_Rwvn8hfcQ5U-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</creator><creatorcontrib>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</creatorcontrib><description>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</description><identifier>ISSN: 2068-7966</identifier><identifier>ISBN: 9781467359795</identifier><identifier>ISBN: 1467359793</identifier><identifier>EISBN: 9781467359788</identifier><identifier>EISBN: 1467359785</identifier><identifier>EISBN: 1467359807</identifier><identifier>EISBN: 9781467359801</identifier><identifier>DOI: 10.1109/ATEE.2013.6563478</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blades ; cantilever ; finite element ; Magnetic domains ; Magnetic fields ; magnetic microactuator ; Mathematical model ; mathematical modeling ; Mirrors ; modal analysis ; Numerical models ; numerical simulation ; planar spiral coil ; Solid modeling ; stationary analysis</subject><ispartof>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6563478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6563478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morega, A. M.</creatorcontrib><creatorcontrib>Tanase, N.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Morega, M.</creatorcontrib><creatorcontrib>Dumitru, J. B.</creatorcontrib><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><title>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE)</title><addtitle>ATEE</addtitle><description>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</description><subject>Blades</subject><subject>cantilever</subject><subject>finite element</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>magnetic microactuator</subject><subject>Mathematical model</subject><subject>mathematical modeling</subject><subject>Mirrors</subject><subject>modal analysis</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>planar spiral coil</subject><subject>Solid modeling</subject><subject>stationary analysis</subject><issn>2068-7966</issn><isbn>9781467359795</isbn><isbn>1467359793</isbn><isbn>9781467359788</isbn><isbn>1467359785</isbn><isbn>1467359807</isbn><isbn>9781467359801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KxDAUhSMqOIx9AHGTF2jNT5M0y2GojjCoi3E93Ca3Q6BpJU0F394BZ-PqnA8O3-IQ8sBZxTmzT5tD21aCcVlppWVtmitSWNPwWhupzqW5_sdW3ZCVYLopjdX6jhTzHDrGjJLWCrkiH29LxBQcDHQOcRkgh2mkU09hpDigy2mKcBoxB0c7HH0YT2WcPFIHYw4DfmOiMbg0gcsL5Cndk9sehhmLS67J53N72O7K_fvL63azLwM3Kpe1laKrmdKN4sp7q3svgEkvhdVeMQu9boA7wI55BKPhvDadML1DZzrfyzV5_PMGRDx-pRAh_Rwvn8hfcQ5U-g</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Morega, A. M.</creator><creator>Tanase, N.</creator><creator>Popa, M.</creator><creator>Morega, M.</creator><creator>Dumitru, J. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</title><author>Morega, A. M. ; Tanase, N. ; Popa, M. ; Morega, M. ; Dumitru, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4932b40568515dd96fd2a03d3296d509af68a1caeb0dea76a2b47b27fcec7bdf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blades</topic><topic>cantilever</topic><topic>finite element</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>magnetic microactuator</topic><topic>Mathematical model</topic><topic>mathematical modeling</topic><topic>Mirrors</topic><topic>modal analysis</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>planar spiral coil</topic><topic>Solid modeling</topic><topic>stationary analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Morega, A. M.</creatorcontrib><creatorcontrib>Tanase, N.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Morega, M.</creatorcontrib><creatorcontrib>Dumitru, J. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morega, A. M.</au><au>Tanase, N.</au><au>Popa, M.</au><au>Morega, M.</au><au>Dumitru, J. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of an electromagnetic bending-mode cantilever microactuator</atitle><btitle>2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE)</btitle><stitle>ATEE</stitle><date>2013-05</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2068-7966</issn><isbn>9781467359795</isbn><isbn>1467359793</isbn><eisbn>9781467359788</eisbn><eisbn>1467359785</eisbn><eisbn>1467359807</eisbn><eisbn>9781467359801</eisbn><abstract>Micro electromechanical systems (MEMS) are complex devices that consist of structural parts, magnetic materials, and electric coils that interact. Their fabrication relies on complex and expensive technologies therefore accurate design solutions that utilize mathematical modeling and numerical simulations. This paper presents a MEMS bending-mode cantilever microactuator (BCM). Two design solution are CAD-virtualized and their behavior in stationary conditions is evaluated by numerical simulations. The eigenfrequency analysis reveals the modal structural behavior of the BCM. These results may be of interest in the design stage of prototyping such devices.</abstract><pub>IEEE</pub><doi>10.1109/ATEE.2013.6563478</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2068-7966 |
ispartof | 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013, p.1-6 |
issn | 2068-7966 |
language | eng |
recordid | cdi_ieee_primary_6563478 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Blades cantilever finite element Magnetic domains Magnetic fields magnetic microactuator Mathematical model mathematical modeling Mirrors modal analysis Numerical models numerical simulation planar spiral coil Solid modeling stationary analysis |
title | Numerical simulation of an electromagnetic bending-mode cantilever microactuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20an%20electromagnetic%20bending-mode%20cantilever%20microactuator&rft.btitle=2013%208TH%20INTERNATIONAL%20SYMPOSIUM%20ON%20ADVANCED%20TOPICS%20IN%20ELECTRICAL%20ENGINEERING%20(ATEE)&rft.au=Morega,%20A.%20M.&rft.date=2013-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2068-7966&rft.isbn=9781467359795&rft.isbn_list=1467359793&rft_id=info:doi/10.1109/ATEE.2013.6563478&rft_dat=%3Cieee_6IE%3E6563478%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467359788&rft.eisbn_list=1467359785&rft.eisbn_list=1467359807&rft.eisbn_list=9781467359801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6563478&rfr_iscdi=true |