Dummy Gate-Assisted n-MOSFET Layout for a Radiation-Tolerant Integrated Circuit

A dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was evaluated to demonstrate its effectiveness at mitigating radiation-induced leakage currents in a conventional n-MOSFET. In the proposed DGA n-MOSFET layout, radiation-induced leakage currents are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2013-08, Vol.60 (4), p.3084-3091
Hauptverfasser: Lee, Min Su, Lee, Hee Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was evaluated to demonstrate its effectiveness at mitigating radiation-induced leakage currents in a conventional n-MOSFET. In the proposed DGA n-MOSFET layout, radiation-induced leakage currents are settled by isolating both the source and drain from the sidewall oxides using a p+ layer and dummy gates. Moreover, the dummy gates and dummy Metal-1 layers are expected to suppress the charge trapping in the sidewall oxides. The inherent structure of the DGA n-MOSFET supplements the drawbacks of the enclosed layout transistor, which is also proposed in order to improve radiation tolerance characteristics. The V g -I d simulation results of the DGA n-MOSFET layout demonstrated the effectiveness of eliminating such radiation-induced leakage current paths. Furthermore, the radiation exposure experimental results obtained with the fabricated DGA n-MOSFET layout also exhibited good performance with regard to the total ionizing dose tolerance.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2013.2268390