Efficient, fast and scalable authentication for VANETs

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle communication to enhance road safety and improve driving experience. To secure periodic single-hop beacon messages for VANET applications, digital signature is one of the fundamental security approaches. However, it is vulnerable as excess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen Lyu, Dawu Gu, Xiaomei Zhang, Shifeng Sun, Yinqi Tang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle communication to enhance road safety and improve driving experience. To secure periodic single-hop beacon messages for VANET applications, digital signature is one of the fundamental security approaches. However, it is vulnerable as excessive signatures would exhaust the computational resources of vehicles. In this paper, we propose a novel authentication mechanism VSPT, VANET authentication with Signatures and Prediction-based TESLA, which combines the advantages of both Elliptic Curve Digital Signature Algorithm (ECDSA) and Prediction-based TESLA. Although ECDSA is computationally expensive, it provides authentication and non-repudiation. Prediction-based TESLA enables fast and efficient verification by exploiting the sender's ability to predict its own future beacons. Both theoretical analysis and simulation results show that VSPT outperforms either the signature or TESLA in not only lossless situations but also lossy environments.
ISSN:1525-3511
1558-2612
DOI:10.1109/WCNC.2013.6554831