Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting
In an unreliable single-hop broadcast network setting, we investigate the throughput and decoding-delay performance of random linear network coding as a function of the coding window size and the network size. Our model consists of a source transmitting packets of a single flow to a set of n users o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2013-10, Vol.59 (10), p.6328-6341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an unreliable single-hop broadcast network setting, we investigate the throughput and decoding-delay performance of random linear network coding as a function of the coding window size and the network size. Our model consists of a source transmitting packets of a single flow to a set of n users over independent time-correlated erasure channels. The source performs random linear network coding (RLNC) over k (coding window size) packets and broadcasts them to the users. We note that the broadcast throughput of RLNC must vanish with increasing n, for any fixed k. Hence, in contrast to other works in the literature, we investigate how the coding window size k must scale for increasing n. Our analysis reveals that the coding window size of Θ(ln(n)) represents a phase transition rate, below which the throughput converges to zero, and above which, it converges to the broadcast capacity. Further, we characterize the asymptotic distribution of decoding delay and provide approximate expressions for the mean and variance of decoding delay for the scaling regime of k=ω(ln(n)). These asymptotic expressions reveal the impact of channel correlations on the throughput and delay performance of RLNC. We also show that how our analysis can be extended to other rateless block coding schemes such as the LT codes. Finally, we comment on the extension of our results to the cases of dependent channels across users and asymmetric channel model. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2013.2271895 |