Analysis and Design of Low-Jitter Digital Bang-Bang Phase-Locked Loops

Digital phase-locked loops based on bang-bang phase detectors are attractive candidates for low-jitter clock-frequency multiplication. Unfortunately, the coarse quantization of phase error makes these systems prone to the generation of limit cycles appearing as unwanted spurs in the spectrum. The ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-01, Vol.61 (1), p.26-36
Hauptverfasser: Marucci, Giovanni, Levantino, Salvatore, Maffezzoni, Paolo, Samori, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital phase-locked loops based on bang-bang phase detectors are attractive candidates for low-jitter clock-frequency multiplication. Unfortunately, the coarse quantization of phase error makes these systems prone to the generation of limit cycles appearing as unwanted spurs in the spectrum. The random noise contributed by building blocks and acting as dithering signal can eliminate those spurs. The quantitative analysis of those phenomena becomes more involved when a DCO with relaxed intrinsic resolution, such as a ΔΣ-DCO is employed, and when practical spectra of random noise sources are considered. In this work, the expression of jitter is calculated in closed-form taking into account the quantization, introduced by both phase detector and DCO, and the phase noise of DCO, with both 1/f 2 and 1/f 3 components. Combining these results, a closed-form expression of the total output jitter as a function of loop parameters and noise sources is developed which suggests a minimum-jitter design strategy. The proposed analysis and optimization are validated both numerically and experimentally on a 320-MHz digital bang-bang PLL fabricated in a 65-nm CMOS process.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2013.2268514