Developing a Compton spectrometer for determination of X-ray tube spectra

In medical applications and non-destructive testing, knowledge of emitted X-ray spectra of X-ray tubes can be of great importance, e.g. for quality control issues or material decomposition techniques. Conventional methods of measuring spectra with a photon counting detector positioned in the primary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reims, Nils, Sukowski, Frank, Kilicarslan, Kemalettin
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In medical applications and non-destructive testing, knowledge of emitted X-ray spectra of X-ray tubes can be of great importance, e.g. for quality control issues or material decomposition techniques. Conventional methods of measuring spectra with a photon counting detector positioned in the primary beam often show unsatisfactory results, especially when applying high flux in conjunction with high X-ray eYXB3-01138-A461nergies (above 100 keV). The two main problems arising are pulse pile up, i.e. the impossibility to differentiate between multiple photons in one readout interval, and the reduced detector efficiency at high X-ray energies because of limited sensor thickness. These effects lead to significant errors in the determination of X-ray tube spectra. To overcome these limitations we built a Compton spectrometer based on the Compton spectroscopy approach by Yaffe et al.
ISSN:1082-3654
2577-0829
DOI:10.1109/NSSMIC.2012.6551744