A simulation of a layered 6Li foil multi-wire proportional counter
The shortage of 3 He gas for neutron detection has led to alternative technologies for large-area high-efficiency neutron detectors. Recently, MCNP6-beta has been released and has the ability to track the energy of low mass particles, which now allows neutron detector pulse-height spectra to be simu...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shortage of 3 He gas for neutron detection has led to alternative technologies for large-area high-efficiency neutron detectors. Recently, MCNP6-beta has been released and has the ability to track the energy of low mass particles, which now allows neutron detector pulse-height spectra to be simulated. A Monte-Carlo code generated in MatLab was used to validate the MCNP6-beta neutron response pulse-height spectra of a 6 Li foil multi-wire proportional counter. After validation, MCNP6 was used to optimize HDPE thicknesses in front and back of the detector against a 252 Cf neutron source. Additionally, the pulse-height spectra was obtained using MCNP6 for detector pressures of 1.0, 1.5, 2.0, and 2.8 atm. Lastly, the angular response was investigated and remained relatively constant over angles ranging from 0 to 45 degrees from normal incidence. |
---|---|
ISSN: | 1082-3654 2577-0829 |
DOI: | 10.1109/NSSMIC.2012.6551094 |