Efficiency of oscillation-based BIST in 90nm CMOS active analog filters

Research presented in this paper is aimed at the comparison of the Oscillation-based Built-In Self Test (OBIST) efficiency in covering catastrophic and parametric faults in active analog integrated filters designed in two different technologies. Sallen-Key topologies of low-pass and high-pass filter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arbet, D., Nagy, G., Stopjakova, V., Gyepes, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research presented in this paper is aimed at the comparison of the Oscillation-based Built-In Self Test (OBIST) efficiency in covering catastrophic and parametric faults in active analog integrated filters designed in two different technologies. Sallen-Key topologies of low-pass and high-pass filters were used as Circuit Under Test (CUT), designed in 0.35μm and 90nm CMOS technologies. The presented oscillation test strategy uses the on-chip Schmitt oscillator as the reference frequency source to compensate the influence of process parameter variations. Achieved results show that the proposed BIST approach is fully implementable in nanoscale technologies. Finally, dependence of the fault coverage on the oscillation frequency value was investigated.
DOI:10.1109/DDECS.2013.6549830