A Glass-in-Silicon Reflow Process for Three-Dimensional Microsystems
This paper reports a new batch-mode fabrication process that combines glass and silicon into a single wafer. The technique requires only a single mask to lithographically define recesses in silicon using deep reactive ion etching. The patterned silicon wafer is anodically bonded to a glass wafer, an...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2013-12, Vol.22 (6), p.1470-1477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports a new batch-mode fabrication process that combines glass and silicon into a single wafer. The technique requires only a single mask to lithographically define recesses in silicon using deep reactive ion etching. The patterned silicon wafer is anodically bonded to a glass wafer, and a high-temperature step reflows the glass into this silicon mold. The reflowed wafer stack is then planarized and thinned. Through-glass vias can be realized in this manner while additional process-flow modifications enable features such as molded cavities in the glass. A capacitive pressure sensor and a hermetically sealed resonator are described to illustrate applications of the process. Finally, a three dimensional packaging technique for implantable biomedical microsystems is shown by vertically stacking glass-in-silicon wafers. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2013.2265851 |