With a little help from my friends
A typical person has numerous online friends that, according to studies, the person often consults for opinions and advice. However, public broadcasting a question to all friends risks social capital when repeated too often, is not tolerant to topic sensitivity, and can result in no response, as the...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A typical person has numerous online friends that, according to studies, the person often consults for opinions and advice. However, public broadcasting a question to all friends risks social capital when repeated too often, is not tolerant to topic sensitivity, and can result in no response, as the message is lost in a myriad of status updates. Direct messaging is more personal and avoids these pitfalls, but requires manual selection of friends to contact, which can be time consuming and challenging. A user may have difficulty guessing which of their numerous online friends can provide a high quality and timely response. We demonstrate a working system that addresses these issues by returning an ordered subset of friends predicting (a) near-term availability, (b) willingness to respond and (c) topical knowledge, given a query. The combination of these three aspects are unique to our solution, and all are critical to the problem of obtaining timely and relevant responses. Our system acts as a decision aid - we give insight into why each friend was recommended and let the user decide whom to contact. |
---|---|
ISSN: | 1063-6382 2375-026X |
DOI: | 10.1109/ICDE.2013.6544926 |