Cooperative Positioning for Vehicular Networks: Facts and Future
Intelligent transportation systems (ITSs) are increasingly being considered to mitigate the impacts of road transportation, including road injuries, energy waste, and environmental pollution. Vehicular positioning is a fundamental part of many ITS applications. Although global navigation satellite s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2013-12, Vol.14 (4), p.1708-1717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intelligent transportation systems (ITSs) are increasingly being considered to mitigate the impacts of road transportation, including road injuries, energy waste, and environmental pollution. Vehicular positioning is a fundamental part of many ITS applications. Although global navigation satellite systems (GNSSs), e.g., Global Positioning System (GPS), are applicable for navigation and fleet management, the accuracy and availability of GNSSs do not meet the requirements for some applications, including collision avoidance or lane-level positioning. Cooperative positioning (CP) based on vehicular communications is an approach to tackle these shortcomings. The applicability of vehicular CP techniques proposed in the literature is questionable due to viability issues, including internode distance estimation, which is an important part of many CP techniques. Conventional CP systems such as differential GPS (DGPS) and other augmentation systems are also effectively incapable of addressing the given ITS applications. In this paper, modern and conventional CP systems are discussed, and the viability of radio ranging/range rating and constraints of vehicular communications as main pieces of modern CP systems are investigated. The general performance boundaries for modern CP systems are explained, as is the gap existing between the positioning accuracy required for crucial ITS applications and what modern CP can provide. This is followed by introduction of a novel trend for vehicular CP research, which is a potential reliable solution using a modified concept of real-time kinematic (RTK) GPSs for vehicular environments. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2013.2266339 |