A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron

In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Skodzik, J., Altmann, V., Wagner, B., Danielis, P., Timmermann, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue
container_start_page 429
container_title
container_volume
creator Skodzik, J.
Altmann, V.
Wagner, B.
Danielis, P.
Timmermann, D.
description In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.
doi_str_mv 10.1109/AINA.2013.19
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6531787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6531787</ieee_id><sourcerecordid>6531787</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e96e48bda11eb9d41fe2800f9f6b3b5e5b41ba9ed079b079e9ac02c10ed7dfb63</originalsourceid><addsrcrecordid>eNotjLtuwjAUQN2X1EDZunXJD5j6xr52PKaoQCTaoqqV2JBNbqirEFAeQ_6-SHQ4OsORDmOPIKYAwj5n-Xs2TQTIKdgrNrEmFUZbVBZles2iRMqEo8b0ho1AaSMRUWxuWQRnc6Vwc89GbfsrhNTKYMTyLF6G_U81xHnd0b5xvqJ4vl5k_MW1VMSffd2FA_HZsS7Dvr_0t77qQuUGauI1NTs6dc2xfmB3patamvx7zL7nr1-zJV99LPJZtuIBDHacrCaV-sIBkLeFgpKSVIjSltpLj4RegXeWCmGsP0PW7USyA0GFKUqv5Zg9Xb6BiLanJhxcM2w1SjCpkX9RZVCK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</creator><creatorcontrib>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</creatorcontrib><description>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 146735550X</identifier><identifier>ISBN: 9781467355506</identifier><identifier>EISSN: 2332-5658</identifier><identifier>EISBN: 9780769549538</identifier><identifier>EISBN: 0769549535</identifier><identifier>DOI: 10.1109/AINA.2013.19</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Field programmable gate arrays ; Hardware ; Multilayer perceptrons ; Neurons ; Reconfigurable logic ; Runtime ; Software ; Transfer functions</subject><ispartof>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 2013, p.429-436</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6531787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6531787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skodzik, J.</creatorcontrib><creatorcontrib>Altmann, V.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Danielis, P.</creatorcontrib><creatorcontrib>Timmermann, D.</creatorcontrib><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><title>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)</title><addtitle>aina</addtitle><description>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Multilayer perceptrons</subject><subject>Neurons</subject><subject>Reconfigurable logic</subject><subject>Runtime</subject><subject>Software</subject><subject>Transfer functions</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>146735550X</isbn><isbn>9781467355506</isbn><isbn>9780769549538</isbn><isbn>0769549535</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtuwjAUQN2X1EDZunXJD5j6xr52PKaoQCTaoqqV2JBNbqirEFAeQ_6-SHQ4OsORDmOPIKYAwj5n-Xs2TQTIKdgrNrEmFUZbVBZles2iRMqEo8b0ho1AaSMRUWxuWQRnc6Vwc89GbfsrhNTKYMTyLF6G_U81xHnd0b5xvqJ4vl5k_MW1VMSffd2FA_HZsS7Dvr_0t77qQuUGauI1NTs6dc2xfmB3patamvx7zL7nr1-zJV99LPJZtuIBDHacrCaV-sIBkLeFgpKSVIjSltpLj4RegXeWCmGsP0PW7USyA0GFKUqv5Zg9Xb6BiLanJhxcM2w1SjCpkX9RZVCK</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Skodzik, J.</creator><creator>Altmann, V.</creator><creator>Wagner, B.</creator><creator>Danielis, P.</creator><creator>Timmermann, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><author>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e96e48bda11eb9d41fe2800f9f6b3b5e5b41ba9ed079b079e9ac02c10ed7dfb63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Multilayer perceptrons</topic><topic>Neurons</topic><topic>Reconfigurable logic</topic><topic>Runtime</topic><topic>Software</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Skodzik, J.</creatorcontrib><creatorcontrib>Altmann, V.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Danielis, P.</creatorcontrib><creatorcontrib>Timmermann, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skodzik, J.</au><au>Altmann, V.</au><au>Wagner, B.</au><au>Danielis, P.</au><au>Timmermann, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</atitle><btitle>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)</btitle><stitle>aina</stitle><date>2013-03</date><risdate>2013</risdate><spage>429</spage><epage>436</epage><pages>429-436</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>146735550X</isbn><isbn>9781467355506</isbn><eisbn>9780769549538</eisbn><eisbn>0769549535</eisbn><coden>IEEPAD</coden><abstract>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2013.19</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-445X
ispartof 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 2013, p.429-436
issn 1550-445X
2332-5658
language eng
recordid cdi_ieee_primary_6531787
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological neural networks
Field programmable gate arrays
Hardware
Multilayer perceptrons
Neurons
Reconfigurable logic
Runtime
Software
Transfer functions
title A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Highly%20Integrable%20FPGA-Based%20Runtime-Configurable%20Multilayer%20Perceptron&rft.btitle=2013%20IEEE%2027th%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA)&rft.au=Skodzik,%20J.&rft.date=2013-03&rft.spage=429&rft.epage=436&rft.pages=429-436&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=146735550X&rft.isbn_list=9781467355506&rft.coden=IEEPAD&rft_id=info:doi/10.1109/AINA.2013.19&rft_dat=%3Cieee_6IE%3E6531787%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549538&rft.eisbn_list=0769549535&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6531787&rfr_iscdi=true