A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron
In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | |
container_start_page | 429 |
container_title | |
container_volume | |
creator | Skodzik, J. Altmann, V. Wagner, B. Danielis, P. Timmermann, D. |
description | In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal. |
doi_str_mv | 10.1109/AINA.2013.19 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6531787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6531787</ieee_id><sourcerecordid>6531787</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e96e48bda11eb9d41fe2800f9f6b3b5e5b41ba9ed079b079e9ac02c10ed7dfb63</originalsourceid><addsrcrecordid>eNotjLtuwjAUQN2X1EDZunXJD5j6xr52PKaoQCTaoqqV2JBNbqirEFAeQ_6-SHQ4OsORDmOPIKYAwj5n-Xs2TQTIKdgrNrEmFUZbVBZles2iRMqEo8b0ho1AaSMRUWxuWQRnc6Vwc89GbfsrhNTKYMTyLF6G_U81xHnd0b5xvqJ4vl5k_MW1VMSffd2FA_HZsS7Dvr_0t77qQuUGauI1NTs6dc2xfmB3patamvx7zL7nr1-zJV99LPJZtuIBDHacrCaV-sIBkLeFgpKSVIjSltpLj4RegXeWCmGsP0PW7USyA0GFKUqv5Zg9Xb6BiLanJhxcM2w1SjCpkX9RZVCK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</creator><creatorcontrib>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</creatorcontrib><description>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 146735550X</identifier><identifier>ISBN: 9781467355506</identifier><identifier>EISSN: 2332-5658</identifier><identifier>EISBN: 9780769549538</identifier><identifier>EISBN: 0769549535</identifier><identifier>DOI: 10.1109/AINA.2013.19</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Field programmable gate arrays ; Hardware ; Multilayer perceptrons ; Neurons ; Reconfigurable logic ; Runtime ; Software ; Transfer functions</subject><ispartof>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 2013, p.429-436</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6531787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6531787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skodzik, J.</creatorcontrib><creatorcontrib>Altmann, V.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Danielis, P.</creatorcontrib><creatorcontrib>Timmermann, D.</creatorcontrib><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><title>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)</title><addtitle>aina</addtitle><description>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Multilayer perceptrons</subject><subject>Neurons</subject><subject>Reconfigurable logic</subject><subject>Runtime</subject><subject>Software</subject><subject>Transfer functions</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>146735550X</isbn><isbn>9781467355506</isbn><isbn>9780769549538</isbn><isbn>0769549535</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtuwjAUQN2X1EDZunXJD5j6xr52PKaoQCTaoqqV2JBNbqirEFAeQ_6-SHQ4OsORDmOPIKYAwj5n-Xs2TQTIKdgrNrEmFUZbVBZles2iRMqEo8b0ho1AaSMRUWxuWQRnc6Vwc89GbfsrhNTKYMTyLF6G_U81xHnd0b5xvqJ4vl5k_MW1VMSffd2FA_HZsS7Dvr_0t77qQuUGauI1NTs6dc2xfmB3patamvx7zL7nr1-zJV99LPJZtuIBDHacrCaV-sIBkLeFgpKSVIjSltpLj4RegXeWCmGsP0PW7USyA0GFKUqv5Zg9Xb6BiLanJhxcM2w1SjCpkX9RZVCK</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Skodzik, J.</creator><creator>Altmann, V.</creator><creator>Wagner, B.</creator><creator>Danielis, P.</creator><creator>Timmermann, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</title><author>Skodzik, J. ; Altmann, V. ; Wagner, B. ; Danielis, P. ; Timmermann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e96e48bda11eb9d41fe2800f9f6b3b5e5b41ba9ed079b079e9ac02c10ed7dfb63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Multilayer perceptrons</topic><topic>Neurons</topic><topic>Reconfigurable logic</topic><topic>Runtime</topic><topic>Software</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Skodzik, J.</creatorcontrib><creatorcontrib>Altmann, V.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Danielis, P.</creatorcontrib><creatorcontrib>Timmermann, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skodzik, J.</au><au>Altmann, V.</au><au>Wagner, B.</au><au>Danielis, P.</au><au>Timmermann, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron</atitle><btitle>2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)</btitle><stitle>aina</stitle><date>2013-03</date><risdate>2013</risdate><spage>429</spage><epage>436</epage><pages>429-436</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>146735550X</isbn><isbn>9781467355506</isbn><eisbn>9780769549538</eisbn><eisbn>0769549535</eisbn><coden>IEEPAD</coden><abstract>In this paper, a highly integrable Field Programmable Gate Array-based hardware design of multilayer perceptron as a realization of an artificial neural network is presented. Such a hardware solution ensures a deterministic behavior required for any hard real-time compositions. The integration into existing systems is achieved by the application of UDP/IP. %A developed protocol enables the hardware solution to act as a stand-alone device with no need for an additional host PC. Additionally, the presented design is highly flexible due to a parameterizable multilayer perceptron approach. However, most reconfigurations usually require a hard coded reimplementation, resynthesis, and the download of a new bit file to the target platform, which also requires an additional host PC. Contrary with the presented solution, it is possible to configure the multilayer perceptron's parameters during runtime via a software interface. This approach allows the multilayer perceptron to be adapted to nearly any application. The developed design combines the flexibility of a software solution to generate and comfortably reconfigure the multilayer perceptron as well as the high performance of a hardware solution. %The investigation of hardware utilization and performance of a running prototype stützt%Finally, the hardware utilization and performance are investigated. As proof of concept, a running prototype has been realized, which shows the design to be highly flexible and with good performance while the hardware resource consumption is kept minimal.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2013.19</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-445X |
ispartof | 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 2013, p.429-436 |
issn | 1550-445X 2332-5658 |
language | eng |
recordid | cdi_ieee_primary_6531787 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Biological neural networks Field programmable gate arrays Hardware Multilayer perceptrons Neurons Reconfigurable logic Runtime Software Transfer functions |
title | A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Highly%20Integrable%20FPGA-Based%20Runtime-Configurable%20Multilayer%20Perceptron&rft.btitle=2013%20IEEE%2027th%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA)&rft.au=Skodzik,%20J.&rft.date=2013-03&rft.spage=429&rft.epage=436&rft.pages=429-436&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=146735550X&rft.isbn_list=9781467355506&rft.coden=IEEPAD&rft_id=info:doi/10.1109/AINA.2013.19&rft_dat=%3Cieee_6IE%3E6531787%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549538&rft.eisbn_list=0769549535&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6531787&rfr_iscdi=true |