An Optimal Power Scheduling Method for Demand Response in Home Energy Management System

With the development of smart grid, residents have the opportunity to schedule their power usage in the home by themselves for the purpose of reducing electricity expense and alleviating the power peak-to-average ratio (PAR). In this paper, we first introduce a general architecture of energy managem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2013-09, Vol.4 (3), p.1391-1400
Hauptverfasser: Zhuang Zhao, Won Cheol Lee, Yoan Shin, Kyung-Bin Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of smart grid, residents have the opportunity to schedule their power usage in the home by themselves for the purpose of reducing electricity expense and alleviating the power peak-to-average ratio (PAR). In this paper, we first introduce a general architecture of energy management system (EMS) in a home area network (HAN) based on the smart grid and then propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price that is transferred to an energy management controller (EMC). With the DR, the EMC achieves an optimal power scheduling scheme that can be delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way. When only the real-time pricing (RTP) model is adopted, there is the possibility that most appliances would operate during the time with the lowest electricity price, and this may damage the entire electricity system due to the high PAR. In our research, we combine RTP with the inclining block rate (IBR) model. By adopting this combined pricing model, our proposed power scheduling method would effectively reduce both the electricity cost and PAR, thereby, strengthening the stability of the entire electricity system. Because these kinds of optimization problems are usually nonlinear, we use a genetic algorithm to solve this problem.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2013.2251018