Compressive Blind Image Deconvolution

We propose a novel blind image deconvolution (BID) regularization framework for compressive sensing (CS) based imaging systems capturing blurred images. The proposed framework relies on a constrained optimization technique, which is solved by a sequence of unconstrained sub-problems, and allows the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-10, Vol.22 (10), p.3994-4006
Hauptverfasser: Amizic, Bruno, Spinoulas, Leonidas, Molina, Rafael, Katsaggelos, Aggelos K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel blind image deconvolution (BID) regularization framework for compressive sensing (CS) based imaging systems capturing blurred images. The proposed framework relies on a constrained optimization technique, which is solved by a sequence of unconstrained sub-problems, and allows the incorporation of existing CS reconstruction algorithms in compressive BID problems. As an example, a non-convex lp quasi-norm with 0
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2013.2266100