ESESC: A fast multicore simulator using Time-Based Sampling
Architects rely on simulation in their exploration of the design space. However, slow simulation speed caps their productivity and limits the depth of their exploration. Sampling has been a commonly used remedy. While sampling is shown to be an effective technique for single core processors, its app...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Architects rely on simulation in their exploration of the design space. However, slow simulation speed caps their productivity and limits the depth of their exploration. Sampling has been a commonly used remedy. While sampling is shown to be an effective technique for single core processors, its application has been limited to simulation of multi-program, throughput applications only. This work presents Time-Based Sampling (TBS), a framework that is the first to enable sampling in simulation of multicore processors with virtually no limitation in terms of application type (multi-programmed or multithreaded), number of cores, homogeneity or heterogeneity of the simulated configuration (4.99% error averaged across all the evaluated configurations). TBS also is the first to enable integrated power and temperature evaluation in statistically sampled simulation of multicore systems (with 5.5% and 2.4% error on average, respectively). We implement an architectural simulator based on TBS, called ESESC, that provides a holistic set of tools for a fair evaluation of different architectures. |
---|---|
ISSN: | 1530-0897 2378-203X |
DOI: | 10.1109/HPCA.2013.6522340 |