SVR-NoC: A performance analysis tool for Network-on-Chips using learning-based support vector regression model
In this work, we propose SVR-NoC, a learning-based support vector regression (SVR) model for evaluating Network-on-Chip (NoC) latency performance. Different from the state-of-the-art NoC analytical model, which uses classical queuing theory to directly compute the average channel waiting time, the p...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we propose SVR-NoC, a learning-based support vector regression (SVR) model for evaluating Network-on-Chip (NoC) latency performance. Different from the state-of-the-art NoC analytical model, which uses classical queuing theory to directly compute the average channel waiting time, the proposed SVR-NoC model performs NoC latency analysis based on learning the typical training data. More specifically, we develop a systematic machine-learning framework that uses the kernel-based support vector regression method to predict the channel average waiting time and the traffic flow latency. Experimental results show that SVR-NoC can predict the average packet latency accurately while achieving about 120X speed-up over simulation-based evaluation methods. |
---|---|
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.7873/DATE.2013.083 |