Path planning for a hyper-redundant manipulator with lockable joints using PSO
In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then b...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then by pulling the cables, the configuration of the corresponding link will change and the manipulator will tilt to its new position. Therefore, by unlocking the links in sequence and pulling the cables, any desirable configuration of manipulator can be reached. In path planning problem, the desired path of the end-effector is given and the optimum sequence of switching (discrete) and the optimum cables length (continuous) during the motion must be calculated. In this study, a novel approach in particle swarm optimization is proposed. In this approach, the integer and continuous value numbers are joined together in a single particle to form a hybrid particle. In this way, the optimization in hybrid space is done. The results of this investigation show effectiveness of the proposed method. |
---|---|
DOI: | 10.1109/ICRoM.2013.6510109 |