The world of thermal characterization according to DELPHI-Part I: Background to DELPHI

The accurate prediction of the temperatures of critical electronic parts at the package, board and system level is seriously hampered by the lack of reliable, standardized input data that characterize the thermal behaviour of these parts. The recently completed collaborative European project DELPHI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology. Part A packaging, and manufacturing technology. Part A, 1997-12, Vol.20 (4), p.384-391
Hauptverfasser: Rosten, H.I., Lasance, C.J.M., Parry, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate prediction of the temperatures of critical electronic parts at the package, board and system level is seriously hampered by the lack of reliable, standardized input data that characterize the thermal behaviour of these parts. The recently completed collaborative European project DELPHI has been concerned with the creation and experimental validation of thermal models (both detailed and compact) of a range of electronic parts, including mono-chip packages, heat sinks, electrolytic capacitors, transformers, and interfacing materials. The ultimate goal of the DELPHI project was to get component manufacturers to supply validated thermal models of their parts to end users by adopting the experimental techniques used to validate the detailed thermal conduction models of the parts, and the methods to generate compact models. Part II of this paper contains technical information on both experimental and numerical methods. In order to reduce design-cycle time and physical prototyping, equipment manufacturers need to ascertain the thermal performance of new systems at the earliest possible stage of the design process. Accurate, validated thermal models of the critical parts used in the design are needed to provide the thermal precision necessary to design out the functional and reliability failures that result from component overheating.
ISSN:1070-9886
1558-3678
DOI:10.1109/95.650927