Pruned Adaptive Routing in the heterogeneous Internet of Things

Recent research endeavours are capitalizing on state of the art technologies to build a scalable Internet of Things (IoT). Envisioned as a technology to integrate the best of Wireless Sensor Networks and RFID systems, there is much promise for a global network of objects that are identifiable, track...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oteafy, S. M. A., Al-Turjman, F. M., Hassanein, H. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research endeavours are capitalizing on state of the art technologies to build a scalable Internet of Things (IoT). Envisioned as a technology to integrate the best of Wireless Sensor Networks and RFID systems, there is much promise for a global network of objects that are identifiable, track-able, and harmoniously informing. However, the realization of an IoT framework is hindered by many factors, the most pressing of which is attributed to the integration of these heterogeneous nodes and devices. A considerable subset of these nodes undergoes movement and dynamically enters and leaves the network backbone/topology. Routing packets and inter-nodal communication has received little attention; mainly due to the sheer reliance on the Internet as a backbone. However, spatially correlated entities in the IoT, and those which most often interact, would pose a significant overhead of communication if all intermediate packets need to be routed over distant backhauls. In remedy, we present a Pruned Adaptive IoT Routing (PAIR) protocol that selectively establishes routes of communication between IoT nodes. Since nodes in the IoT belong to different owners, we also introduce a pricing model to cater for the exchange of monetary costs by intermediate nodes to utilize their relaying resources. We also establish a cap on inter-nodal routing to dynamically utilize the Internet backbone if the source to destination distance surpasses a preset (case optimized) threshold. The PAIR routing protocol is elaborated upon, building upon the detailed system model presented in this paper. We finally present a use case to demonstrate the utility and practicality of PAIR in the heterogeneous IoT as it scales.
ISSN:1930-529X
2576-764X
DOI:10.1109/GLOCOM.2012.6503115