Adaptive Fuzzy Rule-Based Classification System Integrating Both Expert Knowledge and Data
This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that combines errors caused by the class predefined by expert knowledge and nearby historical data. The weights of the two errors can be adjusted by a conservative parameter. Experimental results show that our method significantly reduces classification ambiguity in 9 datasets. |
---|---|
ISSN: | 1082-3409 2375-0197 |
DOI: | 10.1109/ICTAI.2012.114 |