Robust Time-Frequency Analysis Based on the L-Estimation and Compressive Sensing
The L-estimate transforms and time-frequency representations are presented within the framework of compressive sensing. The goal is to recover signal or local auto-correlation function samples corrupted by impulse noise. The signal is assumed to be sparse in a transform domain or in a joint-variable...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2013-05, Vol.20 (5), p.499-502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The L-estimate transforms and time-frequency representations are presented within the framework of compressive sensing. The goal is to recover signal or local auto-correlation function samples corrupted by impulse noise. The signal is assumed to be sparse in a transform domain or in a joint-variable representation. Unlike the standard L-statistics approach, which suffers from degraded spectral characteristics due to the omission of samples, the compressive sensing in combination with the L-estimate permits signal reconstruction that closely approximates the noise free signal representation. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2013.2252899 |