High mobility high-κ-all-around asymmetrically-strained Germanium nanowire trigate p-MOSFETs
We demonstrate for the first time, asymmetrically strained Ge, high-κ/metal gate nanowire (NW) trigate p-MOSFETs with record hole mobility of 1490 cm 2 /Vs. This mobility is 2x above on-chip, biaxially strained Ge planar FETs and ~15x above Si universal mobility. The fabrication approach features: (...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate for the first time, asymmetrically strained Ge, high-κ/metal gate nanowire (NW) trigate p-MOSFETs with record hole mobility of 1490 cm 2 /Vs. This mobility is 2x above on-chip, biaxially strained Ge planar FETs and ~15x above Si universal mobility. The fabrication approach features: (1) a new strained Si/strained Ge/HfO 2 NW channel materials stack, with HfO 2 dielectric at the bottom which acts as an excellent etch stop for top-down NW formation, and also unpins the back Ge-dielectric interface, (2) large compressive biaxial strain (~2.5%) that is built into the channel material prior to layer transfer, and (3) lateral strain relaxation by nanoscale patterning of the channel. The resulting asymmetric strain distribution dramatically reduces the conductivity effective mass. 6×6 k.p quantum mechanical simulations predict an increase in the Ge NW average inverse effective mass by a factor of 1.6 relative to planar biaxially strained Ge, consistent with the measured 2x mobility enhancement. |
---|---|
ISSN: | 0163-1918 2156-017X |
DOI: | 10.1109/IEDM.2012.6479055 |