Robust Multi-Bernoulli Filtering

In Bayesian multi-target filtering knowledge of parameters such as clutter intensity and detection probability profile are of critical importance. Significant mismatches in clutter and detection model parameters results in biased estimates. In this paper we propose a multi-target filtering solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2013-06, Vol.7 (3), p.399-409
Hauptverfasser: Ba-Tuong Vo, Ba-Ngu Vo, Hoseinnezhad, R., Mahler, R. P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Bayesian multi-target filtering knowledge of parameters such as clutter intensity and detection probability profile are of critical importance. Significant mismatches in clutter and detection model parameters results in biased estimates. In this paper we propose a multi-target filtering solution that can accommodate non-linear target models and an unknown non-homogeneous clutter and detection profile. Our solution is based on the multi-target multi-Bernoulli filter that adaptively learns non-homogeneous clutter intensity and detection probability while filtering.
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2013.2252325