High throughput software for direct numerical simulations of compressible two-phase flows

We present an open source, object-oriented software for high throughput Direct Numerical Simulations of compressible, two-phase flows. The Navier-Stokes equations are discretized on uniform grids using high order finite volume methods. The software exploits recent CPU micro-architectures by explicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hejazialhosseini, B., Rossinelli, D., Conti, C., Koumoutsakos, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an open source, object-oriented software for high throughput Direct Numerical Simulations of compressible, two-phase flows. The Navier-Stokes equations are discretized on uniform grids using high order finite volume methods. The software exploits recent CPU micro-architectures by explicit vectorization and adopts NUMA-aware techniques as well as data and computation reordering. We report a compressible flow solver with unprecedented fractions of peak performance: 45% of the peak for a single node (nominal performance of 840 GFLOP/s) and 30% for a cluster of 47'000 cores (nominal performance of 0.8 PFLOP/s). We suggest that the present work may serve as a performance upper bound, regarding achievable GFLOP/s, for two-phase flow solvers using adaptive mesh refinement. The software enables 3D simulations of shock-bubble interaction including, for the first time, effects of diffusion and surface tension, by efficiently employing two hundred billion computational elements.
ISSN:2167-4329
2167-4337
DOI:10.1109/SC.2012.66