Use of SSTA Tools for Evaluating BTI Impact on Combinational Circuits
This paper presents an extensive statistical study on the impact of bias temperature instability (BTI) on digital circuits. A statistical framework for the evaluation of BTI at the electrical (SPICE) level, enhanced by an atomistic model for BTI, is introduced. This framework is then employed to per...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2014-02, Vol.22 (2), p.280-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an extensive statistical study on the impact of bias temperature instability (BTI) on digital circuits. A statistical framework for the evaluation of BTI at the electrical (SPICE) level, enhanced by an atomistic model for BTI, is introduced. This framework is then employed to perform the timing analysis of different combinational paths using cells from a given library, aiming to statistically model BTI at the higher abstraction level. A statistical static timing analysis (SSTA) method is then performed and the results are compared to detailed simulations using atomistic models based on experimental data. The comparison between the two methods shows that for large paths both methods converge to the same distribution for the delay while for short paths the delay distributions are different causing the SSTA method to generate misleading results. An analysis is then performed in order to understand and formalize the results. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2013.2240323 |