Integrating discrete-event and time-based models with optimization for resource allocation

Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hubscher-Younger, T., Mosterman, P. J., DeLand, S., Orqueda, O., Eastman, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title
container_volume
creator Hubscher-Younger, T.
Mosterman, P. J.
DeLand, S.
Orqueda, O.
Eastman, D.
description Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense. The complexity of modern systems, however, often prohibits such formalization, especially when different modeling paradigms interact. Phenomena, such as parasitic effects, present additional complexity. This work employs a generative approach to optimization, where computational simulation of the problem space is combined with a computational optimization approach in the solution space. To address the multi-paradigm nature, simulation relies on a unifying semantic domain in the form of an abstract execution framework that can be made concrete. Because of the flexibility of the computational infrastructure, a highly configurable integrated environment is made available to the optimization expert. The overall approach is illustrated with a resource allocation problem, which combines continuous-time, discrete-event, and state-transition systems.
doi_str_mv 10.1109/WSC.2012.6465258
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465258</ieee_id><sourcerecordid>6465258</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-75c83bcaab1a6c1eca32e2d6f3db94efb09df4bd4fb080b12e2a2b316743fc733</originalsourceid><addsrcrecordid>eNo9kEtLAzEcxOMLrLV3wUu-QGre2Ryl-IKCBxXBS8njvzWy3S1JVPTTu2jxNMP8mDkMQmeMzhmj9uL5YTHnlPG5llpx1eyhEya1EdI0XO2jCVOqIVJQdfAPjFWHaEIby4gxQh-jWSlvlNJxT1trJujlrq-wzq6mfo1jKiFDBQIf0Ffs-ohr2gDxrkDEmyFCV_Bnqq942I4gfY-1ocftkHGGMrznANh13RB-81N01LquwGynU_R0ffW4uCXL-5u7xeWSJM5MJUaFRvjgnGdOBwbBCQ486lZEbyW0ntrYSh_l6Brq2Qgd94JpI0UbjBBTdP63mwBgtc1p4_LXaveR-AHLbFkM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating discrete-event and time-based models with optimization for resource allocation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hubscher-Younger, T. ; Mosterman, P. J. ; DeLand, S. ; Orqueda, O. ; Eastman, D.</creator><creatorcontrib>Hubscher-Younger, T. ; Mosterman, P. J. ; DeLand, S. ; Orqueda, O. ; Eastman, D.</creatorcontrib><description>Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense. The complexity of modern systems, however, often prohibits such formalization, especially when different modeling paradigms interact. Phenomena, such as parasitic effects, present additional complexity. This work employs a generative approach to optimization, where computational simulation of the problem space is combined with a computational optimization approach in the solution space. To address the multi-paradigm nature, simulation relies on a unifying semantic domain in the form of an abstract execution framework that can be made concrete. Because of the flexibility of the computational infrastructure, a highly configurable integrated environment is made available to the optimization expert. The overall approach is illustrated with a resource allocation problem, which combines continuous-time, discrete-event, and state-transition systems.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 1467347795</identifier><identifier>ISBN: 9781467347792</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1467347825</identifier><identifier>EISBN: 9781467347815</identifier><identifier>EISBN: 1467347817</identifier><identifier>EISBN: 1467347809</identifier><identifier>EISBN: 9781467347822</identifier><identifier>EISBN: 9781467347808</identifier><identifier>DOI: 10.1109/WSC.2012.6465258</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Computational modeling ; Logic gates ; Mathematical model ; Optimization ; Semantics ; Software packages</subject><ispartof>Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-15</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hubscher-Younger, T.</creatorcontrib><creatorcontrib>Mosterman, P. J.</creatorcontrib><creatorcontrib>DeLand, S.</creatorcontrib><creatorcontrib>Orqueda, O.</creatorcontrib><creatorcontrib>Eastman, D.</creatorcontrib><title>Integrating discrete-event and time-based models with optimization for resource allocation</title><title>Proceedings of the 2012 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense. The complexity of modern systems, however, often prohibits such formalization, especially when different modeling paradigms interact. Phenomena, such as parasitic effects, present additional complexity. This work employs a generative approach to optimization, where computational simulation of the problem space is combined with a computational optimization approach in the solution space. To address the multi-paradigm nature, simulation relies on a unifying semantic domain in the form of an abstract execution framework that can be made concrete. Because of the flexibility of the computational infrastructure, a highly configurable integrated environment is made available to the optimization expert. The overall approach is illustrated with a resource allocation problem, which combines continuous-time, discrete-event, and state-transition systems.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Software packages</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>1467347795</isbn><isbn>9781467347792</isbn><isbn>1467347825</isbn><isbn>9781467347815</isbn><isbn>1467347817</isbn><isbn>1467347809</isbn><isbn>9781467347822</isbn><isbn>9781467347808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEcxOMLrLV3wUu-QGre2Ryl-IKCBxXBS8njvzWy3S1JVPTTu2jxNMP8mDkMQmeMzhmj9uL5YTHnlPG5llpx1eyhEya1EdI0XO2jCVOqIVJQdfAPjFWHaEIby4gxQh-jWSlvlNJxT1trJujlrq-wzq6mfo1jKiFDBQIf0Ffs-ohr2gDxrkDEmyFCV_Bnqq942I4gfY-1ocftkHGGMrznANh13RB-81N01LquwGynU_R0ffW4uCXL-5u7xeWSJM5MJUaFRvjgnGdOBwbBCQ486lZEbyW0ntrYSh_l6Brq2Qgd94JpI0UbjBBTdP63mwBgtc1p4_LXaveR-AHLbFkM</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hubscher-Younger, T.</creator><creator>Mosterman, P. J.</creator><creator>DeLand, S.</creator><creator>Orqueda, O.</creator><creator>Eastman, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Integrating discrete-event and time-based models with optimization for resource allocation</title><author>Hubscher-Younger, T. ; Mosterman, P. J. ; DeLand, S. ; Orqueda, O. ; Eastman, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-75c83bcaab1a6c1eca32e2d6f3db94efb09df4bd4fb080b12e2a2b316743fc733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Software packages</topic><toplevel>online_resources</toplevel><creatorcontrib>Hubscher-Younger, T.</creatorcontrib><creatorcontrib>Mosterman, P. J.</creatorcontrib><creatorcontrib>DeLand, S.</creatorcontrib><creatorcontrib>Orqueda, O.</creatorcontrib><creatorcontrib>Eastman, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hubscher-Younger, T.</au><au>Mosterman, P. J.</au><au>DeLand, S.</au><au>Orqueda, O.</au><au>Eastman, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating discrete-event and time-based models with optimization for resource allocation</atitle><btitle>Proceedings of the 2012 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>1467347795</isbn><isbn>9781467347792</isbn><eisbn>1467347825</eisbn><eisbn>9781467347815</eisbn><eisbn>1467347817</eisbn><eisbn>1467347809</eisbn><eisbn>9781467347822</eisbn><eisbn>9781467347808</eisbn><abstract>Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense. The complexity of modern systems, however, often prohibits such formalization, especially when different modeling paradigms interact. Phenomena, such as parasitic effects, present additional complexity. This work employs a generative approach to optimization, where computational simulation of the problem space is combined with a computational optimization approach in the solution space. To address the multi-paradigm nature, simulation relies on a unifying semantic domain in the form of an abstract execution framework that can be made concrete. Because of the flexibility of the computational infrastructure, a highly configurable integrated environment is made available to the optimization expert. The overall approach is illustrated with a resource allocation problem, which combines continuous-time, discrete-event, and state-transition systems.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2012.6465258</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-15
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_6465258
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Computational modeling
Logic gates
Mathematical model
Optimization
Semantics
Software packages
title Integrating discrete-event and time-based models with optimization for resource allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20discrete-event%20and%20time-based%20models%20with%20optimization%20for%20resource%20allocation&rft.btitle=Proceedings%20of%20the%202012%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Hubscher-Younger,%20T.&rft.date=2012-01-01&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=1467347795&rft.isbn_list=9781467347792&rft_id=info:doi/10.1109/WSC.2012.6465258&rft_dat=%3Cieee_6IE%3E6465258%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467347825&rft.eisbn_list=9781467347815&rft.eisbn_list=1467347817&rft.eisbn_list=1467347809&rft.eisbn_list=9781467347822&rft.eisbn_list=9781467347808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465258&rfr_iscdi=true