Integrating discrete-event and time-based models with optimization for resource allocation
Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense....
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optimization's importance for technical systems' performance can hardly be overstated. Even small improvements can result in substantial cost, resources and time savings. A constructive approach to dynamic system optimization can formalize the optimization problem in a mathematical sense. The complexity of modern systems, however, often prohibits such formalization, especially when different modeling paradigms interact. Phenomena, such as parasitic effects, present additional complexity. This work employs a generative approach to optimization, where computational simulation of the problem space is combined with a computational optimization approach in the solution space. To address the multi-paradigm nature, simulation relies on a unifying semantic domain in the form of an abstract execution framework that can be made concrete. Because of the flexibility of the computational infrastructure, a highly configurable integrated environment is made available to the optimization expert. The overall approach is illustrated with a resource allocation problem, which combines continuous-time, discrete-event, and state-transition systems. |
---|---|
ISSN: | 0891-7736 1558-4305 |
DOI: | 10.1109/WSC.2012.6465258 |