The computational complexity of knot and link problems

We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted (that is, whether it is capable of being continuously deformed without self-intersection so that it lies in a plane). We show that this problem, UNKNOTTING PROBLEM, is in NP. We also consider t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hass, J., Lagarias, J.C., Pippenger, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted (that is, whether it is capable of being continuously deformed without self-intersection so that it lies in a plane). We show that this problem, UNKNOTTING PROBLEM, is in NP. We also consider the problem, SPLITTING PROBLEM, of determining whether two or more such polygons can be split (that is, whether they are capable of being continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it), and show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in PSPACE.
ISSN:0272-5428
DOI:10.1109/SFCS.1997.646106