Pedestrian tracking in low contrast regions using aggregated background model and Silhouette Components

We propose an approach for pedestrian detection and tracking in low contrast regions. The approach is composed of two modules. Module-1 improves the pixel-based Mixture of Gaussians (MOG) by aggregated background modeling and varying interval differences. Module-2 exploits the Local Patch Variance (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gee-Sern Hsu, Hong Phuoc Nguyen, Chien-Hung Wu, Sheng-Leun Chung
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an approach for pedestrian detection and tracking in low contrast regions. The approach is composed of two modules. Module-1 improves the pixel-based Mixture of Gaussians (MOG) by aggregated background modeling and varying interval differences. Module-2 exploits the Local Patch Variance (LPV) and Partial Silhouette Template (PST) for compensating the incomplete foregrounds often observed in low contrast scenes regardless of the approaches. Experiments show that the proposed approach performs satisfactorily.
ISSN:1051-4651
2831-7475