k-MLE for mixtures of generalized Gaussians

We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schwander, O., Schutz, A. J., Nielsen, F., Berthoumieu, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2828
container_issue
container_start_page 2825
container_title
container_volume
creator Schwander, O.
Schutz, A. J.
Nielsen, F.
Berthoumieu, Y.
description We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460753</ieee_id><sourcerecordid>6460753</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-914de16350675b6bdba10161cdda6bfdfdfada26e6c8fdb5d2d6ac8b4e86b8c33</originalsourceid><addsrcrecordid>eNotjMtKQzEUAOMLvK39AjfZSyAnj5NkKaVW4Yobuy7JzYlE-5CbFtSvV1RmMYuBOWGz4LwJQaIxIMMp65TXIJxx9uy3gUGnlQI056wDaUEYtHDJJq29Sqmktr5jN2_isV_wsh_5tn4cjiM1vi_8hXY0xk39osyX8dhajbt2xS5K3DSa_XvKVneL5_m96J-WD_PbXlRw9iACmEyA2kp0NmHKKYIEhCHniKnkH2KOCgkHX3KyWWWMg0-GPCY_aD1l13_fSkTr97Fu4_i5RoPSWa2_AWTaQic</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>k-MLE for mixtures of generalized Gaussians</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</creator><creatorcontrib>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</creatorcontrib><description>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computational modeling ; Convergence ; Cost function ; Gaussian distribution ; Maximum likelihood estimation ; Shape</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.2825-2828</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwander, O.</creatorcontrib><creatorcontrib>Schutz, A. J.</creatorcontrib><creatorcontrib>Nielsen, F.</creatorcontrib><creatorcontrib>Berthoumieu, Y.</creatorcontrib><title>k-MLE for mixtures of generalized Gaussians</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</description><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Gaussian distribution</subject><subject>Maximum likelihood estimation</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKQzEUAOMLvK39AjfZSyAnj5NkKaVW4Yobuy7JzYlE-5CbFtSvV1RmMYuBOWGz4LwJQaIxIMMp65TXIJxx9uy3gUGnlQI056wDaUEYtHDJJq29Sqmktr5jN2_isV_wsh_5tn4cjiM1vi_8hXY0xk39osyX8dhajbt2xS5K3DSa_XvKVneL5_m96J-WD_PbXlRw9iACmEyA2kp0NmHKKYIEhCHniKnkH2KOCgkHX3KyWWWMg0-GPCY_aD1l13_fSkTr97Fu4_i5RoPSWa2_AWTaQic</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Schwander, O.</creator><creator>Schutz, A. J.</creator><creator>Nielsen, F.</creator><creator>Berthoumieu, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>k-MLE for mixtures of generalized Gaussians</title><author>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-914de16350675b6bdba10161cdda6bfdfdfada26e6c8fdb5d2d6ac8b4e86b8c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Gaussian distribution</topic><topic>Maximum likelihood estimation</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Schwander, O.</creatorcontrib><creatorcontrib>Schutz, A. J.</creatorcontrib><creatorcontrib>Nielsen, F.</creatorcontrib><creatorcontrib>Berthoumieu, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwander, O.</au><au>Schutz, A. J.</au><au>Nielsen, F.</au><au>Berthoumieu, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>k-MLE for mixtures of generalized Gaussians</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>2825</spage><epage>2828</epage><pages>2825-2828</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.2825-2828
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460753
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Computational modeling
Convergence
Cost function
Gaussian distribution
Maximum likelihood estimation
Shape
title k-MLE for mixtures of generalized Gaussians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=k-MLE%20for%20mixtures%20of%20generalized%20Gaussians&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Schwander,%20O.&rft.date=2012-11&rft.spage=2825&rft.epage=2828&rft.pages=2825-2828&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460753%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460753&rfr_iscdi=true