k-MLE for mixtures of generalized Gaussians
We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2828 |
---|---|
container_issue | |
container_start_page | 2825 |
container_title | |
container_volume | |
creator | Schwander, O. Schutz, A. J. Nielsen, F. Berthoumieu, Y. |
description | We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460753</ieee_id><sourcerecordid>6460753</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-914de16350675b6bdba10161cdda6bfdfdfada26e6c8fdb5d2d6ac8b4e86b8c33</originalsourceid><addsrcrecordid>eNotjMtKQzEUAOMLvK39AjfZSyAnj5NkKaVW4Yobuy7JzYlE-5CbFtSvV1RmMYuBOWGz4LwJQaIxIMMp65TXIJxx9uy3gUGnlQI056wDaUEYtHDJJq29Sqmktr5jN2_isV_wsh_5tn4cjiM1vi_8hXY0xk39osyX8dhajbt2xS5K3DSa_XvKVneL5_m96J-WD_PbXlRw9iACmEyA2kp0NmHKKYIEhCHniKnkH2KOCgkHX3KyWWWMg0-GPCY_aD1l13_fSkTr97Fu4_i5RoPSWa2_AWTaQic</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>k-MLE for mixtures of generalized Gaussians</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</creator><creatorcontrib>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</creatorcontrib><description>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computational modeling ; Convergence ; Cost function ; Gaussian distribution ; Maximum likelihood estimation ; Shape</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.2825-2828</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwander, O.</creatorcontrib><creatorcontrib>Schutz, A. J.</creatorcontrib><creatorcontrib>Nielsen, F.</creatorcontrib><creatorcontrib>Berthoumieu, Y.</creatorcontrib><title>k-MLE for mixtures of generalized Gaussians</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</description><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Gaussian distribution</subject><subject>Maximum likelihood estimation</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKQzEUAOMLvK39AjfZSyAnj5NkKaVW4Yobuy7JzYlE-5CbFtSvV1RmMYuBOWGz4LwJQaIxIMMp65TXIJxx9uy3gUGnlQI056wDaUEYtHDJJq29Sqmktr5jN2_isV_wsh_5tn4cjiM1vi_8hXY0xk39osyX8dhajbt2xS5K3DSa_XvKVneL5_m96J-WD_PbXlRw9iACmEyA2kp0NmHKKYIEhCHniKnkH2KOCgkHX3KyWWWMg0-GPCY_aD1l13_fSkTr97Fu4_i5RoPSWa2_AWTaQic</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Schwander, O.</creator><creator>Schutz, A. J.</creator><creator>Nielsen, F.</creator><creator>Berthoumieu, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>k-MLE for mixtures of generalized Gaussians</title><author>Schwander, O. ; Schutz, A. J. ; Nielsen, F. ; Berthoumieu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-914de16350675b6bdba10161cdda6bfdfdfada26e6c8fdb5d2d6ac8b4e86b8c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Gaussian distribution</topic><topic>Maximum likelihood estimation</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Schwander, O.</creatorcontrib><creatorcontrib>Schutz, A. J.</creatorcontrib><creatorcontrib>Nielsen, F.</creatorcontrib><creatorcontrib>Berthoumieu, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwander, O.</au><au>Schutz, A. J.</au><au>Nielsen, F.</au><au>Berthoumieu, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>k-MLE for mixtures of generalized Gaussians</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>2825</spage><epage>2828</epage><pages>2825-2828</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.2825-2828 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460753 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Computational modeling Convergence Cost function Gaussian distribution Maximum likelihood estimation Shape |
title | k-MLE for mixtures of generalized Gaussians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=k-MLE%20for%20mixtures%20of%20generalized%20Gaussians&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Schwander,%20O.&rft.date=2012-11&rft.spage=2825&rft.epage=2828&rft.pages=2825-2828&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460753%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460753&rfr_iscdi=true |