k-MLE for mixtures of generalized Gaussians
We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient. |
---|---|
ISSN: | 1051-4651 2831-7475 |