Face pose estimation with combined 2D and 3D HOG features

This paper describes an approach to location and orientation estimation of a person's face with color image and depth data from a Kinect sensor. The combined 2D and 3D histogram of oriented gradients (HOG) features, called RGBD-HOG features, are extracted and used throughout our approach. We pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiaolong Yang, Wei Liang, Yunde Jia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an approach to location and orientation estimation of a person's face with color image and depth data from a Kinect sensor. The combined 2D and 3D histogram of oriented gradients (HOG) features, called RGBD-HOG features, are extracted and used throughout our approach. We present a coarse-to-fine localization paradigm to obtain localization results efficiently using multiple HOG filters trained in support vector machines (SVMs). A feed-forward multi-layer perception (MLP) network is trained for fine face orientation estimation over a continuous range. The experimental result demonstrates the effectiveness of the RGBD-HOG feature and our face pose estimation approach.
ISSN:1051-4651
2831-7475