Image classification using HTM cortical learning algorithms

Recently the improved bag of features (BoF) model with locality-constrained linear coding (LLC) and spatial pyramid matching (SPM) achieved state-of-the-art performance in image classification. However, only adopting SPM to exploit spatial information is not enough for satisfactory performance. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wen Zhuo, Zhiguo Cao, Yueming Qin, Zhenghong Yu, Yang Xiao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently the improved bag of features (BoF) model with locality-constrained linear coding (LLC) and spatial pyramid matching (SPM) achieved state-of-the-art performance in image classification. However, only adopting SPM to exploit spatial information is not enough for satisfactory performance. In this paper, we use hierarchical temporal memory (HTM) cortical learning algorithms to extend this LLC & SPM based model. HTM regions consist of HTM cells are constructed to spatial pool the LLC codes. Each cell receives a subset of LLC codes, and adjacent subsets are overlapped so that more spatial information can be captured. Additionally, HTM cortical learning algorithms have two processes: learning phase which make the HTM cell only receive most frequent LLC codes, and inhibition phase which ensure that the output of HTM regions is sparse. The experimental results on Caltech 101 and UIUC-Sport dataset show the improvement on the original LLC & SPM based model.
ISSN:1051-4651
2831-7475