Evaluation of Anisotropic Conductive Films Based on Vertical Fibers for Post-CMOS Wafer-Level Packaging

In this paper, we investigate the mechanical and electrical properties of an anisotropic conductive film (ACF) on the basis of high-density vertical fibers for a wafer-level packaging (WLP) application. As part of the WaferBoard, a reconfigurable circuit platform for rapid system prototyping, ACF is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2013-04, Vol.3 (4), p.581-591
Hauptverfasser: Diop, M. D., Radji, M., Hamoui, A. A., Blaquiere, Y., Izquierdo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the mechanical and electrical properties of an anisotropic conductive film (ACF) on the basis of high-density vertical fibers for a wafer-level packaging (WLP) application. As part of the WaferBoard, a reconfigurable circuit platform for rapid system prototyping, ACF is used as an intermediate film providing compliant and vertical electrical connection between chip contacts and a top surface of an active wafer-size large-area IC. The chosen ACF is first tested by an indentation technique. The results show that the elastic-plastic deformation mode as well as the Young's modulus and the hardness depend on the indentation depth. Second, the efficiency of the electrical contact is tested using a uniaxial compression on a stack comprising a dummy ball grid array (BGA) board, an ACF, and a thin Al film. For three bump diameters, as the compression increases, the resistance values decrease before reaching low and stable values. Despite the BGA solder bumps exhibit plastic deformation after compression, no damage is found on the ACF film. These results show that vertical fiber ACFs can be used for nonpermanent bonding in a WLP application.
ISSN:2156-3950
2156-3985
DOI:10.1109/TCPMT.2013.2243203