A model of an optical biosensor detecting environment

Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Phan, A. D., Tracy, D. A., Viet, N. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Phan, A. D.
Tracy, D. A.
Viet, N. A.
description Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.
doi_str_mv 10.1109/PGC.2012.6457991
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6457991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6457991</ieee_id><sourcerecordid>6457991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-da67e0f70bf9f3d8c367b65950013c9a46e17f8b5da55823392c3766a7d7ccca3</originalsourceid><addsrcrecordid>eNpVj8FKxDAURSMiKGP3gpv8QGte0uQ1y6HoODCgC10PafIikTYZ2iL49wrOxtXlbA7nMnYHogEQ9uF11zdSgGxMq9FauGCVxQ5ag0pqMPryH6v2mlXL8imEAJCtMt0N01s-lUAjL5G7zMtpTd6NfEhlobyUmQdaya8pf3DKX2kueaK83rKr6MaFqvNu2PvT41v_XB9edvt-e6iTBFzr4AySiCiGaKMKnVcGB6Ot_g1Q3rrWEGDsBh2c1p1Uykqv0BiHAb33Tm3Y_Z83EdHxNKfJzd_H81n1A1kvRrU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A model of an optical biosensor detecting environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</creator><creatorcontrib>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</creatorcontrib><description>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</description><identifier>ISBN: 9781467325134</identifier><identifier>ISBN: 1467325139</identifier><identifier>EISBN: 9781467325165</identifier><identifier>EISBN: 1467325155</identifier><identifier>EISBN: 9781467325158</identifier><identifier>EISBN: 1467325163</identifier><identifier>DOI: 10.1109/PGC.2012.6457991</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; biosensor ; Biosensors ; carbon nanotube ; Dielectric constant ; DNA ; DNA model ; exciton binding energy ; Excitons ; graphene nanoribbon ; Ions</subject><ispartof>2012 Photonics Global Conference (PGC), 2012, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6457991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6457991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, A. D.</creatorcontrib><creatorcontrib>Tracy, D. A.</creatorcontrib><creatorcontrib>Viet, N. A.</creatorcontrib><title>A model of an optical biosensor detecting environment</title><title>2012 Photonics Global Conference (PGC)</title><addtitle>PGC</addtitle><description>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</description><subject>Biological system modeling</subject><subject>biosensor</subject><subject>Biosensors</subject><subject>carbon nanotube</subject><subject>Dielectric constant</subject><subject>DNA</subject><subject>DNA model</subject><subject>exciton binding energy</subject><subject>Excitons</subject><subject>graphene nanoribbon</subject><subject>Ions</subject><isbn>9781467325134</isbn><isbn>1467325139</isbn><isbn>9781467325165</isbn><isbn>1467325155</isbn><isbn>9781467325158</isbn><isbn>1467325163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8FKxDAURSMiKGP3gpv8QGte0uQ1y6HoODCgC10PafIikTYZ2iL49wrOxtXlbA7nMnYHogEQ9uF11zdSgGxMq9FauGCVxQ5ag0pqMPryH6v2mlXL8imEAJCtMt0N01s-lUAjL5G7zMtpTd6NfEhlobyUmQdaya8pf3DKX2kueaK83rKr6MaFqvNu2PvT41v_XB9edvt-e6iTBFzr4AySiCiGaKMKnVcGB6Ot_g1Q3rrWEGDsBh2c1p1Uykqv0BiHAb33Tm3Y_Z83EdHxNKfJzd_H81n1A1kvRrU</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Phan, A. D.</creator><creator>Tracy, D. A.</creator><creator>Viet, N. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>A model of an optical biosensor detecting environment</title><author>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-da67e0f70bf9f3d8c367b65950013c9a46e17f8b5da55823392c3766a7d7ccca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological system modeling</topic><topic>biosensor</topic><topic>Biosensors</topic><topic>carbon nanotube</topic><topic>Dielectric constant</topic><topic>DNA</topic><topic>DNA model</topic><topic>exciton binding energy</topic><topic>Excitons</topic><topic>graphene nanoribbon</topic><topic>Ions</topic><toplevel>online_resources</toplevel><creatorcontrib>Phan, A. D.</creatorcontrib><creatorcontrib>Tracy, D. A.</creatorcontrib><creatorcontrib>Viet, N. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, A. D.</au><au>Tracy, D. A.</au><au>Viet, N. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A model of an optical biosensor detecting environment</atitle><btitle>2012 Photonics Global Conference (PGC)</btitle><stitle>PGC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467325134</isbn><isbn>1467325139</isbn><eisbn>9781467325165</eisbn><eisbn>1467325155</eisbn><eisbn>9781467325158</eisbn><eisbn>1467325163</eisbn><abstract>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</abstract><pub>IEEE</pub><doi>10.1109/PGC.2012.6457991</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467325134
ispartof 2012 Photonics Global Conference (PGC), 2012, p.1-4
issn
language eng
recordid cdi_ieee_primary_6457991
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
biosensor
Biosensors
carbon nanotube
Dielectric constant
DNA
DNA model
exciton binding energy
Excitons
graphene nanoribbon
Ions
title A model of an optical biosensor detecting environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20model%20of%20an%20optical%20biosensor%20detecting%20environment&rft.btitle=2012%20Photonics%20Global%20Conference%20(PGC)&rft.au=Phan,%20A.%20D.&rft.date=2012-01-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467325134&rft.isbn_list=1467325139&rft_id=info:doi/10.1109/PGC.2012.6457991&rft_dat=%3Cieee_6IE%3E6457991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325165&rft.eisbn_list=1467325155&rft.eisbn_list=9781467325158&rft.eisbn_list=1467325163&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6457991&rfr_iscdi=true