A model of an optical biosensor detecting environment
Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminan...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Phan, A. D. Tracy, D. A. Viet, N. A. |
description | Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors. |
doi_str_mv | 10.1109/PGC.2012.6457991 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6457991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6457991</ieee_id><sourcerecordid>6457991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-da67e0f70bf9f3d8c367b65950013c9a46e17f8b5da55823392c3766a7d7ccca3</originalsourceid><addsrcrecordid>eNpVj8FKxDAURSMiKGP3gpv8QGte0uQ1y6HoODCgC10PafIikTYZ2iL49wrOxtXlbA7nMnYHogEQ9uF11zdSgGxMq9FauGCVxQ5ag0pqMPryH6v2mlXL8imEAJCtMt0N01s-lUAjL5G7zMtpTd6NfEhlobyUmQdaya8pf3DKX2kueaK83rKr6MaFqvNu2PvT41v_XB9edvt-e6iTBFzr4AySiCiGaKMKnVcGB6Ot_g1Q3rrWEGDsBh2c1p1Uykqv0BiHAb33Tm3Y_Z83EdHxNKfJzd_H81n1A1kvRrU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A model of an optical biosensor detecting environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</creator><creatorcontrib>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</creatorcontrib><description>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</description><identifier>ISBN: 9781467325134</identifier><identifier>ISBN: 1467325139</identifier><identifier>EISBN: 9781467325165</identifier><identifier>EISBN: 1467325155</identifier><identifier>EISBN: 9781467325158</identifier><identifier>EISBN: 1467325163</identifier><identifier>DOI: 10.1109/PGC.2012.6457991</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; biosensor ; Biosensors ; carbon nanotube ; Dielectric constant ; DNA ; DNA model ; exciton binding energy ; Excitons ; graphene nanoribbon ; Ions</subject><ispartof>2012 Photonics Global Conference (PGC), 2012, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6457991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6457991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, A. D.</creatorcontrib><creatorcontrib>Tracy, D. A.</creatorcontrib><creatorcontrib>Viet, N. A.</creatorcontrib><title>A model of an optical biosensor detecting environment</title><title>2012 Photonics Global Conference (PGC)</title><addtitle>PGC</addtitle><description>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</description><subject>Biological system modeling</subject><subject>biosensor</subject><subject>Biosensors</subject><subject>carbon nanotube</subject><subject>Dielectric constant</subject><subject>DNA</subject><subject>DNA model</subject><subject>exciton binding energy</subject><subject>Excitons</subject><subject>graphene nanoribbon</subject><subject>Ions</subject><isbn>9781467325134</isbn><isbn>1467325139</isbn><isbn>9781467325165</isbn><isbn>1467325155</isbn><isbn>9781467325158</isbn><isbn>1467325163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8FKxDAURSMiKGP3gpv8QGte0uQ1y6HoODCgC10PafIikTYZ2iL49wrOxtXlbA7nMnYHogEQ9uF11zdSgGxMq9FauGCVxQ5ag0pqMPryH6v2mlXL8imEAJCtMt0N01s-lUAjL5G7zMtpTd6NfEhlobyUmQdaya8pf3DKX2kueaK83rKr6MaFqvNu2PvT41v_XB9edvt-e6iTBFzr4AySiCiGaKMKnVcGB6Ot_g1Q3rrWEGDsBh2c1p1Uykqv0BiHAb33Tm3Y_Z83EdHxNKfJzd_H81n1A1kvRrU</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Phan, A. D.</creator><creator>Tracy, D. A.</creator><creator>Viet, N. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>A model of an optical biosensor detecting environment</title><author>Phan, A. D. ; Tracy, D. A. ; Viet, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-da67e0f70bf9f3d8c367b65950013c9a46e17f8b5da55823392c3766a7d7ccca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological system modeling</topic><topic>biosensor</topic><topic>Biosensors</topic><topic>carbon nanotube</topic><topic>Dielectric constant</topic><topic>DNA</topic><topic>DNA model</topic><topic>exciton binding energy</topic><topic>Excitons</topic><topic>graphene nanoribbon</topic><topic>Ions</topic><toplevel>online_resources</toplevel><creatorcontrib>Phan, A. D.</creatorcontrib><creatorcontrib>Tracy, D. A.</creatorcontrib><creatorcontrib>Viet, N. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, A. D.</au><au>Tracy, D. A.</au><au>Viet, N. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A model of an optical biosensor detecting environment</atitle><btitle>2012 Photonics Global Conference (PGC)</btitle><stitle>PGC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467325134</isbn><isbn>1467325139</isbn><eisbn>9781467325165</eisbn><eisbn>1467325155</eisbn><eisbn>9781467325158</eisbn><eisbn>1467325163</eisbn><abstract>Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors.</abstract><pub>IEEE</pub><doi>10.1109/PGC.2012.6457991</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467325134 |
ispartof | 2012 Photonics Global Conference (PGC), 2012, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6457991 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling biosensor Biosensors carbon nanotube Dielectric constant DNA DNA model exciton binding energy Excitons graphene nanoribbon Ions |
title | A model of an optical biosensor detecting environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20model%20of%20an%20optical%20biosensor%20detecting%20environment&rft.btitle=2012%20Photonics%20Global%20Conference%20(PGC)&rft.au=Phan,%20A.%20D.&rft.date=2012-01-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467325134&rft.isbn_list=1467325139&rft_id=info:doi/10.1109/PGC.2012.6457991&rft_dat=%3Cieee_6IE%3E6457991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325165&rft.eisbn_list=1467325155&rft.eisbn_list=9781467325158&rft.eisbn_list=1467325163&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6457991&rfr_iscdi=true |