A model of an optical biosensor detecting environment
Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminan...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heller et. Al. (Science 311, 508 (2006)) demonstrated the first DNA-CN optical sensor by wrapping a piece of double-stranded DNA around the surface of single-walled carbon nanotubes (CN). This new type of optical device can be placed inside living cells and detect trace amounts of harmful contaminants by means of near infrared light. Using a simple exciton theory in nanostructures and the phenomena of B-Z structural phase transition of DNA, we investigate the working principle of this new class of optical biosensor from DNA by using the nanostructure surface as a sensor to detect the property change of DNA as it responds to the presence of target ions. We also propose some new design models by replacing carbon nanotubes with graphene ribbon semiconductors. |
---|---|
DOI: | 10.1109/PGC.2012.6457991 |