Improving the Dynamics of Virtual-Flux-Based Control of Three-Phase Active Rectifiers
Virtual flux (VF)-oriented control (VFOC) and VF-based direct power control (DPC) (VF-DPC) have been developed to improve voltage-oriented control and DPC of three-phase active rectifiers. The VF space vector is utilized in transformations between stationary and rotating coordinates in VFOC and in o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2014-01, Vol.61 (1), p.177-187 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Virtual flux (VF)-oriented control (VFOC) and VF-based direct power control (DPC) (VF-DPC) have been developed to improve voltage-oriented control and DPC of three-phase active rectifiers. The VF space vector is utilized in transformations between stationary and rotating coordinates in VFOC and in obtaining instantaneous power in VF-DPC. The VF space vector is calculated by integrating the grid voltage space vector. This integration is usually performed using a first-order low-pass (LP) (FOLP) filter, which counteracts the saturation and dc-drift problems associated with pure integrators. However, the dynamics of FOLP filters can be enhanced to a great extent. This paper presents a new, simple, and fast integration algorithm for VF-based control methods. Simulations and experimental tests on a VF-DPC-based system showed that the proposed algorithm leads to rapid recoveries after grid voltage sags occur. Moreover, the performance of VF-DPC under nonideal grids is discussed. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2013.2245614 |