Generalized Composite Kernel Framework for Hyperspectral Image Classification

This paper presents a new framework for the development of generalized composite kernel machines for hyperspectral image classification. We construct a new family of generalized composite kernels which exhibit great flexibility when combining the spectral and the spatial information contained in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2013-09, Vol.51 (9), p.4816-4829
Hauptverfasser: Jun Li, Reddy Marpu, Prashanth, Plaza, Antonio, Bioucas-Dias, Jose M., Atli Benediktsson, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new framework for the development of generalized composite kernel machines for hyperspectral image classification. We construct a new family of generalized composite kernels which exhibit great flexibility when combining the spectral and the spatial information contained in the hyperspectral data, without any weight parameters. The classifier adopted in this work is the multinomial logistic regression, and the spatial information is modeled from extended multiattribute profiles. In order to illustrate the good performance of the proposed framework, support vector machines are also used for evaluation purposes. Our experimental results with real hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed framework leads to state-of-the-art classification performance in complex analysis scenarios.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2012.2230268