A Graph-Partitioning Framework for Aligning Hierarchical Topic Structures to Presentations

This paper studies the problem of imposing an existing hierarchical semantic structure onto a corresponding spoken document in which the structures are embedded, with the goal of indexing such documents for easier access. We propose a graph-partitioning framework to solve a semantic tree-to-string a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-05, Vol.21 (5), p.1102-1112
Hauptverfasser: Zhu, Xiaodan, Cherry, Colin, Penn, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the problem of imposing an existing hierarchical semantic structure onto a corresponding spoken document in which the structures are embedded, with the goal of indexing such documents for easier access. We propose a graph-partitioning framework to solve a semantic tree-to-string alignment problem through optimizing a normalized-cut criterion. We present models with different modeling capabilities and time complexities in this framework and provide experimental evidence of their performance. We relate graph partitioning to conventional dynamic time warping (DTW) as it applies to this problem, and show that the proposed framework can naturally include topic segmentation to accommodate cohesion constraints.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2013.2244084