Cornering control method for front-and-rear-wheel-independent-drive-type electric vehicle (FRID EV) on roads with low friction coefficients

Front-and-rear-wheel-independent-drive-type electric vehicles (FRID EVs) have been proposed as next-generation advanced vehicles that can solve the problems of the propulsion-power generating systems of conventional EVs in terms of safety and running performance. The outstanding running performances...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mutoh, N., Takayanagi, T., Murai, S., Yamaguchi, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Front-and-rear-wheel-independent-drive-type electric vehicles (FRID EVs) have been proposed as next-generation advanced vehicles that can solve the problems of the propulsion-power generating systems of conventional EVs in terms of safety and running performance. The outstanding running performances of FRID EVs were clarified previously through various evaluations. This study focused on the cornering performance of FRID EVs on roads with low friction coefficients (μ). FRID EVs have structural features that can independently control the longitudinal forces of the front and rear wheels; moreover, they can dependently control the lateral forces of the left and right wheels on the front and rear ends. In this paper, a cornering control method that is effective for stable operations on low-μ roads is proposed. The proposed control method guarantees the lateral force required for stable revolutions according to the principle of a friction circle. The effectiveness of the proposed cornering control method is demonstrated and verified by experiments on low-μ roads.
ISSN:1938-8756
DOI:10.1109/VPPC.2012.6422625