Thermal management of packages with 3D die stacking
The objective of thermal design requirement for 3D stacked die package is to maintain the junction temperatures of active devices in the package at or below specified limits. In this paper, die-to-die thermal resistance is identified as the key bottleneck in 3D thermal management, and two solution p...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | |
container_start_page | 201 |
container_title | |
container_volume | |
creator | Chia-Pin Chiu Je-Young Chang Saha, Sanjoy |
description | The objective of thermal design requirement for 3D stacked die package is to maintain the junction temperatures of active devices in the package at or below specified limits. In this paper, die-to-die thermal resistance is identified as the key bottleneck in 3D thermal management, and two solution paths are proposed: fully-populated thermal bump array and thermally conductive underfill materials. The sensitivity of the thermal bump array design and the effective thermal conductivity of underfill materials will be discussed. In addition to die-to-die thermal resistance reduction, enhancement of the overall packaging cooling capability by integrating liquid cooling to the package heat spreader is another option especially for the server type of environment which typically dissipates high power. An alternative approach is to integrate thermo-electric cooling to the heat spreader for hot spot cooling. For systems that are limited to traditional air cooling, this paper will propose a different package architecture which will utilize existing cooling capability of 3D die stacking. Although the power dissipation capability of 3D die stacking is worse than the 2D multiple-chip packages, dual-die stacking can potentially achieve a higher efficiency of "performance per power" by utilizing the same concept of dual-core microprocessor. This approach is very useful especially when the package real estate is limited and 3D die stacking is the preferred package architecture. |
doi_str_mv | 10.1109/IMPACT.2012.6420312 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6420312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6420312</ieee_id><sourcerecordid>6420312</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2457a23348cf30cf912707e4833f9455749c110ac565383641307f254ec222473</originalsourceid><addsrcrecordid>eNo9j8tOwzAQRc1LopR8QTf-gYTxzDiOl1V4VSqCRVhXlrFbQxOqJBLi74lEYXV175GudIRYKCiUAnuzenpZ1k2BoLAoGYEUnogrxaUhVZIxp2KGSkOuLeOZyKyp_pjm839GfCmyYXgHAAIFTDwT1OxC37q9bF3ntqEN3Sg_ozw4_zHVQX6lcSfpVr6lIIdxWlO3vRYX0e2HkB1zLl7v75r6MV8_P6zq5TpPyugxR9bGIRFXPhL4aBUaMIEromhZa8PWT3bO61JTRSUrAhNRc_CIyIbmYvH7m0IIm0OfWtd_b47-9AMbvUbi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal management of packages with 3D die stacking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chia-Pin Chiu ; Je-Young Chang ; Saha, Sanjoy</creator><creatorcontrib>Chia-Pin Chiu ; Je-Young Chang ; Saha, Sanjoy</creatorcontrib><description>The objective of thermal design requirement for 3D stacked die package is to maintain the junction temperatures of active devices in the package at or below specified limits. In this paper, die-to-die thermal resistance is identified as the key bottleneck in 3D thermal management, and two solution paths are proposed: fully-populated thermal bump array and thermally conductive underfill materials. The sensitivity of the thermal bump array design and the effective thermal conductivity of underfill materials will be discussed. In addition to die-to-die thermal resistance reduction, enhancement of the overall packaging cooling capability by integrating liquid cooling to the package heat spreader is another option especially for the server type of environment which typically dissipates high power. An alternative approach is to integrate thermo-electric cooling to the heat spreader for hot spot cooling. For systems that are limited to traditional air cooling, this paper will propose a different package architecture which will utilize existing cooling capability of 3D die stacking. Although the power dissipation capability of 3D die stacking is worse than the 2D multiple-chip packages, dual-die stacking can potentially achieve a higher efficiency of "performance per power" by utilizing the same concept of dual-core microprocessor. This approach is very useful especially when the package real estate is limited and 3D die stacking is the preferred package architecture.</description><identifier>ISSN: 2150-5934</identifier><identifier>ISBN: 9781467316354</identifier><identifier>ISBN: 1467316350</identifier><identifier>EISSN: 2150-5942</identifier><identifier>EISBN: 1467316377</identifier><identifier>EISBN: 1467316385</identifier><identifier>EISBN: 9781467316385</identifier><identifier>EISBN: 9781467316378</identifier><identifier>DOI: 10.1109/IMPACT.2012.6420312</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cooling ; Heating ; Materials ; Microchannel ; Thermal conductivity ; Thermal resistance</subject><ispartof>2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012, p.201-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6420312$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6420312$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chia-Pin Chiu</creatorcontrib><creatorcontrib>Je-Young Chang</creatorcontrib><creatorcontrib>Saha, Sanjoy</creatorcontrib><title>Thermal management of packages with 3D die stacking</title><title>2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)</title><addtitle>IMPACT</addtitle><description>The objective of thermal design requirement for 3D stacked die package is to maintain the junction temperatures of active devices in the package at or below specified limits. In this paper, die-to-die thermal resistance is identified as the key bottleneck in 3D thermal management, and two solution paths are proposed: fully-populated thermal bump array and thermally conductive underfill materials. The sensitivity of the thermal bump array design and the effective thermal conductivity of underfill materials will be discussed. In addition to die-to-die thermal resistance reduction, enhancement of the overall packaging cooling capability by integrating liquid cooling to the package heat spreader is another option especially for the server type of environment which typically dissipates high power. An alternative approach is to integrate thermo-electric cooling to the heat spreader for hot spot cooling. For systems that are limited to traditional air cooling, this paper will propose a different package architecture which will utilize existing cooling capability of 3D die stacking. Although the power dissipation capability of 3D die stacking is worse than the 2D multiple-chip packages, dual-die stacking can potentially achieve a higher efficiency of "performance per power" by utilizing the same concept of dual-core microprocessor. This approach is very useful especially when the package real estate is limited and 3D die stacking is the preferred package architecture.</description><subject>Cooling</subject><subject>Heating</subject><subject>Materials</subject><subject>Microchannel</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><issn>2150-5934</issn><issn>2150-5942</issn><isbn>9781467316354</isbn><isbn>1467316350</isbn><isbn>1467316377</isbn><isbn>1467316385</isbn><isbn>9781467316385</isbn><isbn>9781467316378</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8tOwzAQRc1LopR8QTf-gYTxzDiOl1V4VSqCRVhXlrFbQxOqJBLi74lEYXV175GudIRYKCiUAnuzenpZ1k2BoLAoGYEUnogrxaUhVZIxp2KGSkOuLeOZyKyp_pjm839GfCmyYXgHAAIFTDwT1OxC37q9bF3ntqEN3Sg_ozw4_zHVQX6lcSfpVr6lIIdxWlO3vRYX0e2HkB1zLl7v75r6MV8_P6zq5TpPyugxR9bGIRFXPhL4aBUaMIEromhZa8PWT3bO61JTRSUrAhNRc_CIyIbmYvH7m0IIm0OfWtd_b47-9AMbvUbi</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Chia-Pin Chiu</creator><creator>Je-Young Chang</creator><creator>Saha, Sanjoy</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Thermal management of packages with 3D die stacking</title><author>Chia-Pin Chiu ; Je-Young Chang ; Saha, Sanjoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2457a23348cf30cf912707e4833f9455749c110ac565383641307f254ec222473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cooling</topic><topic>Heating</topic><topic>Materials</topic><topic>Microchannel</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Chia-Pin Chiu</creatorcontrib><creatorcontrib>Je-Young Chang</creatorcontrib><creatorcontrib>Saha, Sanjoy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chia-Pin Chiu</au><au>Je-Young Chang</au><au>Saha, Sanjoy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal management of packages with 3D die stacking</atitle><btitle>2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)</btitle><stitle>IMPACT</stitle><date>2012-10</date><risdate>2012</risdate><spage>201</spage><epage>204</epage><pages>201-204</pages><issn>2150-5934</issn><eissn>2150-5942</eissn><isbn>9781467316354</isbn><isbn>1467316350</isbn><eisbn>1467316377</eisbn><eisbn>1467316385</eisbn><eisbn>9781467316385</eisbn><eisbn>9781467316378</eisbn><abstract>The objective of thermal design requirement for 3D stacked die package is to maintain the junction temperatures of active devices in the package at or below specified limits. In this paper, die-to-die thermal resistance is identified as the key bottleneck in 3D thermal management, and two solution paths are proposed: fully-populated thermal bump array and thermally conductive underfill materials. The sensitivity of the thermal bump array design and the effective thermal conductivity of underfill materials will be discussed. In addition to die-to-die thermal resistance reduction, enhancement of the overall packaging cooling capability by integrating liquid cooling to the package heat spreader is another option especially for the server type of environment which typically dissipates high power. An alternative approach is to integrate thermo-electric cooling to the heat spreader for hot spot cooling. For systems that are limited to traditional air cooling, this paper will propose a different package architecture which will utilize existing cooling capability of 3D die stacking. Although the power dissipation capability of 3D die stacking is worse than the 2D multiple-chip packages, dual-die stacking can potentially achieve a higher efficiency of "performance per power" by utilizing the same concept of dual-core microprocessor. This approach is very useful especially when the package real estate is limited and 3D die stacking is the preferred package architecture.</abstract><pub>IEEE</pub><doi>10.1109/IMPACT.2012.6420312</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2150-5934 |
ispartof | 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012, p.201-204 |
issn | 2150-5934 2150-5942 |
language | eng |
recordid | cdi_ieee_primary_6420312 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cooling Heating Materials Microchannel Thermal conductivity Thermal resistance |
title | Thermal management of packages with 3D die stacking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20management%20of%20packages%20with%203D%20die%20stacking&rft.btitle=2012%207th%20International%20Microsystems,%20Packaging,%20Assembly%20and%20Circuits%20Technology%20Conference%20(IMPACT)&rft.au=Chia-Pin%20Chiu&rft.date=2012-10&rft.spage=201&rft.epage=204&rft.pages=201-204&rft.issn=2150-5934&rft.eissn=2150-5942&rft.isbn=9781467316354&rft.isbn_list=1467316350&rft_id=info:doi/10.1109/IMPACT.2012.6420312&rft_dat=%3Cieee_6IE%3E6420312%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467316377&rft.eisbn_list=1467316385&rft.eisbn_list=9781467316385&rft.eisbn_list=9781467316378&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6420312&rfr_iscdi=true |