Neural network based single image super resolution
In this paper a novel learning based technique for single image super resolution (SR) is proposed. We model the relationship between available low resolution (LR) image and desired high resolution (HR) image as multi-scale markov random field (MSMRF). We re-formulate the SR problem in terms of learn...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a novel learning based technique for single image super resolution (SR) is proposed. We model the relationship between available low resolution (LR) image and desired high resolution (HR) image as multi-scale markov random field (MSMRF). We re-formulate the SR problem in terms of learning the mapping between LR-MRF and HR-MRF, which is generally non-linear. Instead of learning MSMRF parameters we use artificial neural networks to learn the desired mapping. The results compare favorably to more complex stat-of-the art techniques for 2 × 2 and 3 × 3 SR problem. We solve the SR problem using optical zoom as a cue by the proposed algorithm as well. The results on experiments with real data are presented. |
---|---|
DOI: | 10.1109/NEUREL.2012.6420014 |