A robust and precise 3D indoor positioning system for harsh environments
In recent years there has been a considerable research on the development of indoor positioning systems. Several kinds of technologies such as ultrasonic, UWB, WLAN, optical waves and hybrid solutions were utilized already. However, using these technologies many difficulties arise in indoor environm...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years there has been a considerable research on the development of indoor positioning systems. Several kinds of technologies such as ultrasonic, UWB, WLAN, optical waves and hybrid solutions were utilized already. However, using these technologies many difficulties arise in indoor environments due to none line of sight (NLoS) and multipath errors. In this paper, the realization and the evaluation of a 3D indoor localization system, which is robust for harsh and NLoS environments is presented. The positioning system is Direct Current (DC) magnetic based, shows no multipath effects and has excellent characteristics for penetrating various obstacles. To eliminate additional interference fields (e.g. earth's magnetic field, electrical disturbances) a differential measurement principle and adaptive noise suppression algorithms are used. In the case of the deployment in smaller areas, even smart phones equipped with embedded low cost sensors can be utilized as mobile station. A real time 3D position estimation with an accuracy up to 50 cm is achievable by setting up only three magnetic coils inside or around the building. In order to analyze existing systematic errors, a simple calibration procedure has been implemented. The calibration routine reduces the systematic errors, which leads to improved system's positioning accuracy up to 10 cm. |
---|---|
DOI: | 10.1109/IPIN.2012.6418863 |