A session-oriented retrieval model based on Markov random field

In this paper, we study how to use the search session information to improve the retrieval accuracy. We propose a session-oriented retrieval model based on Markov random field. This model introduces the correlations between query terms as a retrieval factor into the retrieval process. It also presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yasi Gao, Chuang Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study how to use the search session information to improve the retrieval accuracy. We propose a session-oriented retrieval model based on Markov random field. This model introduces the correlations between query terms as a retrieval factor into the retrieval process. It also presents a dynamic update algorithm based on the analysis of users' search behavior. Our model implements a complete session-oriented information retrieval framework finally. We use ClueWeb09 category B dataset and TREC 2010 (2011) Session dataset to quantitatively evaluate the model. Experimental results show that our model can improve retrieval performance substantially using the search session information.
ISSN:2374-0272
DOI:10.1109/ICNIDC.2012.6418834