Preemptible I/O Scheduling of Garbage Collection for Solid State Drives

Unlike hard disks, flash devices use out-of-place updates operations and require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2013-02, Vol.32 (2), p.247-260
Hauptverfasser: Junghee Lee, Youngjae Kim, Shipman, G. M., Oral, S., Jongman Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike hard disks, flash devices use out-of-place updates operations and require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governed by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in an I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semipreemptible GC (PGC) scheme that allows GC processing to be preempted while pending I/O requests in the queue are serviced. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-PGC scheme with realistic workloads demonstrates both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-PGC scheme. In addition, we explore opportunities of a new NAND flash device that supports suspend/resume commands for read, write, and erase operations for fully PGC (F-PGC). Our experiments with an F-PGC enabled flash device show that request response time can be improved by up to 14.57% compared to semi-PGC.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2012.2227479