Fault tolerant bio-inspired topology control mechanism for autonomous mobile node distribution in MANETs

We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gundry, S., Jianmin Zou, Kusyk, J., Uyar, M. U., Sahin, C. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.
ISSN:2155-7578
2155-7586
DOI:10.1109/MILCOM.2012.6415743